Beteigeuze

Ursprünglich habe ich gedacht, ich kann das als kleine Randinfo in die Kategorie News an den Rand schreiben. Jetzt aber verkaufen sämtliche Medien und Presseanstalten diese eigentliche fast schon irrelevante Nachricht als wunderbar-herrliche Sensation mit viel Tärä! Kurz: Es wurde eine große Helligkeitsabnahme von dem Faktor 2,6 oder 1,15 mag seit etwa Anfang/Mitte Oktober bei Beteigeuze festgestellt. 

Beteigeuze: vom VLT gesehen.

Was ist Beteigeuze?

Beteigeuze ist ein Roter Überriese von etwa 20 bis 22 Sonnenmassen. Seine Spektralklasse ist M2 Ia. Er ist zusammen mit Rigel die dominierenden Sterne im Orion, bzw. in den Wintersternbildern. Beteigeuze existiert ungefähr seit 10 Millionen Jahren und gehört wegen seiner relativen Bewegung zu der Sterngruppe von Orion OB-1 an, eine Sterngruppe, welche hauptsächlich ähnlich junge Sterne beherbergt. Schon mit dem bloßen Auge kann man den Beteigeuze deutlich dunkel sehen.

Was ist ein Roter Überriese?

Ein Roter Überriese ist ein Stern, der die Hauptreihe verlassen hat, da er nun auch schwerere Elemente fusioniert. Er verbrennt nun in verschiedenen Schalen zum Kern hin immer schwerere Elemente. Das nennt man Schalenbrennen. So setzt aber immer die nächsthöhere Kernfusion ab einer gewissen Temperatur und Masse ab. Die Kernfusion von Helium in Kohlenstoff dauert dabei nicht so lange, wie die Fusion von Wasserstoff in Helium. Je fortgeschrittener der Prozess ist, desto schneller geht der Prozess.

Das HRD. (Hertzsprung-Russell-Diagramm)

Dabei kann er nur soweit Schalen haben, wie er auch die Elemente fusioniert. D.h. wenn ein Stern gerade Neon fusioniert, hat er eine Wasserstoff-Schale, eine Helium-Schale und eine Kohlenstoff-Schale.

Manche Rote Überriesen, besonders die größeren, die „Hellen Riesen“ oder die „Überriesen“ neigen dazu, zu pulsieren.

Rote Riesen oder Rote Überriesen entstehen aus den großen Hauptreihensternen, die im Asymptotischen Riesenast heraufsteigen. Auch schwere, heiße und blaue O-Sterne wandern über die Überriesen, später eventuell über die Wolf-Rayet-Sterne zur Supernova. So werden Rote Zwerge, wenn sie kleiner als etwa 0,5 Mʘ sind, zu Weißen Zwergen und glühen dann infolge thermischer Reaktionen einige 1010 Jahre nach, wenn sie größer als etwa eine Halbe Sonnenmasse, werden sie zu Roten Riesen, und so weiter (s. Diagramm). Nach folgender Faustformel war Beteigeuze etwa 6 Millionen Jahre lang in der Hauptreihe als ≈O5-Stern, bevor er dann als Blauer Superriese immer rötlicher wurde. TesT ≈ 1010 a × (M/Mʘ) × (Lʘ/L). Dabei steht TesT für die grobe Anzahl der Jahre für den Verbleib in der Hauptreihe, a für Jahre, M und L für die Masse und Leuchtkraft des Sterns, und Mʘ und Lʘ steht für die Sonnenleuchtkraft. So würde es mit einem Stern (Sx) von M = 1,3 Mʘ; L = 1,65 Lʘ aussehen: TesT ≈ 1010 a × (1,3/1) × (1/1,65) ≈ 7,879 Mrd. a. 

Das Diagramm zeigt die Entwicklung der Hauptreihensterne.

Wo befindet sich Beteigeuze?

Wie schon in der Tabelle erwähnt, befindet er sich im Sternbild Orion. Er bildet die „Schulter“ des Orion und liegt „gegenüber“ von Rigel. Der Orion ist im Herbst/Winter zu sehen, am Besten im Dezember, und ist in seiner Gestalt und Auftreten sehr markant und kaum zu übersehen. Der Orion und somit auch Beteigeuze stehen dem Himmelsäquator nahe. (Der Himmelsäquator schneidet den Orion).

Er markiert am Wintersternenhimmel in den nördlichen Breiten etwa das Zentrum des Wintersechsecks. Das Wintersechseck besteht aus Capella, Aldebaran, Rigel, Sirius, Prokyon, Castor oder Pollux. Im Folgenden kommt eine Sternkarte:

Beteigeuze als östliche Schulter des Orion.

Was sind die möglichen Gründe und Erklärungsversuche für die Helligkeitsabnahme? 

Wie schon gesagt, sinkt die Helligkeit von Beteigeuze seit etwa Mitte Dezember, wie hier verdeutlicht: 

Die gemessenen Helligkeiten lagen aktuell Jahresanfang rund um +1,6 mag. Edward Guinan meldete Ende Dezember auf Astronomer’s Telegram eine Helligkeit von +1,294 mag.

Woran liegt das? Edward Guinan schrieb in seinem Text, dass wahrscheinlich seine zwei verschiedenen Zyklen sich momentan überlappen. Ferner besteht die Möglichkeit, dass austretendes Gas oder Staub aktuell Beteigeuze leicht verdeckt. Die Temperatur der Photosphäre des Sterns ist bereits um 150 K gefallen (Teff = 3’545 K) und seit 1993 ist der Radius um 15 % kleiner geworden.

Beteigeuzes Helligkeitsabnahme

Die Zwei verschiedenen Zyklen? Was ist das genau? Nun, die Photosphäre von Beteigeuze und übrigens auch andere ähnliche Rote Überriesen, wie Mira (Omikron Ceti), pulsieren. Beteigeuze zum Beispiel ist so ein SRc-Typ, also helbregelmäßig und variabel. Die Photosphären von Mira-Sternen schwingen stets mit der Grundfrequenz, schwingen andere halbregelmäßig, wie auch Beteigeuze, wie eben schon gesagt, in einer oder mehreren Harmonischen. Bei Beteigeuze gibt es zwei solcher Zyklen und die sollen sich jetzt nach der Ansicht von Edward Guinan überlappen.

Was macht die Presse daraus?

Die Presse und die ganzen Zeitungen und andere Medien wollen natürlich möglichst interessante Nachrichten präsentieren und teilweise geht das zu weit und wird schnell so dargestellt, dass die Nachricht sensationell wirkt. Schade eigentlich.

Die meisten deutschsprachigen Medien, sogar allgemeinbekannte Medien haben nun sowas geschrieben wie: „Beteigeuze – Im Sternbild Orion erscheint demnächst eine Supernova“, und im Textkörper als erster Satzteil dann sowas wie: „Astronomen wissen, Beteigeuze…; Wissenschaftler sagen, dass Beteigeuze in naher Zukunft explodiert; Wissenschaftler, Wissenschaftler, Forscher, und die Astronomen…“. Mein Mund wird beim Lesen solcher Schlagzeilen in ein langegezogenen, geraden Mund und meine Augen schließen sich, die Hände ballen sich zu Fäusten.

Tatsächlich gibt es einige Medien, die behaupten, dass es schon in einigen Wochen, Monaten oder wenige Jahre soweit sei, oder dass er in Wahrheit 2012 explodierte und die mega-ultra-gigantomanischen Schockwellen, die natürlich nur Aliens gemacht haben können, und dann dass wir es in 643, oder jetzt nur noch 636 ½ Jahre mitbekommen. In 2655. Pah! Wer’s glaubt!

Wenn mich jemand fragen würde, warum solche Berichte nicht stimmen, im Bezug auf das Datum der Supernova, dann würde ich ihm antworten, dass ein Helligkeitsabfall alleine als Erklärung nicht ausreichen würde, aber tatsächlich nicht genau wisse, warum er das jetzt tut. Und dass derjenige ganz sicher nicht mehr in seinem Leben eine Supernova von Beteigeuze ausgehend beobachten könne. Die überlappenden Zyklen sind aber doch eine gute Theorie. Bei einer Supernova wird der Stern zuvor nochmal in der Helligkeit für gewöhnlich ansteigen, wie wir inzwischen recht gut wissen.

Wie lange dauert es tatsächlich zu einer Supernova?

Einer Schätzung und Modellberechnung von slate.com zufolge wird es grob noch 100’000 Jahre dauern, bis Beteigeuze detoniert. Miteinbezogene Parameter waren Radius, Leuchtkraft, Masse, Massenverlustrate vom Sternenwind, Rotationsdauer, Alter und sowas. Eine genauere Beschreibung gab es nicht, aber wenn dieser Stern einiges an Helium bereits verbrannt hat und die Kohlenstoff-Fusion irgendwann demnächst einsetzt, kann die Supernova, es wird eine Supernova vom Typ II werden, in den nächsten Hunderttausend Jahren durchaus passieren. Maximal wird er nur noch 600’000 Jahre haben, so gebe ich eine vorsichtige Schätzung ab.

Erschwerend kommt hinzu, dass es scheinbar sehr schwierig ist Daten wie die Masse, oder den Radius, die Entfernung oder Leuchtkraft zu bestimmen, wenn man wie oben dargestellt teilweise sehr stark abweichende Werte bei verschiedenen Messmethoden bekommt.

Warum kann man nicht gewiss vorhersagen, wann die Supernova stattfinden wird?

Genau, warum kann man nicht sagen, ja, am 23. Mai im Jahr 173208 wird er hochgehen, oder zumindest im Jahr 173208? Aber eine Sache ist sicher, wenn es soweit ist, und er fusioniert Eisen, wird er garantiert nicht mehr als 0,1 Sonnenmassen verloren haben, so kann er zur Supernova werden. Das Endprodukt wird vermutlich ein Neutronenstern, obwohl er theoretisch schon ein schwarzes Loch werden könnte, bloß wird er in der Supernova vergleichsweise viel Material davonschleudern.

 Nun, Supernovae passieren in unserer Ecke nur seeehr selten! Im letzten Jahrtausend gab es selbst vermutlich nur 4 Supernovae in unserer Galaxie und die Letzte war von 1604. Eine Supernova in unserer Satellitengalaxie GMC, oder GMW, fand 1987 statt. (Die Neutrinodetektoren maßen 11 Neutrinos fast zeitgleich und zwar bereits ein paar Stunden zuvor.) Wenn man also von einem solchen Ereignis zuvor unverhältnismäßig viele Neutrinos detektiert, könnte man sagen, dass sich demnächst eine Supernova stattfinden mag, aber ob man aus den Messungen ein Vektor berechnen lässt, welcher Stern zur Supernova werden wird, ist fraglich. Nachtrag: Man hatte 6 Supernovae letztes Jahrtausend in unserer registriert und man schätzt, dass man die meisten durch interstellare Extinktion in der galaktischen Scheibe nicht mitbekommt. So schätzen die Wissenschaftler 12 bis 26 Supernovae jedes Jahrtausend in unserer Galaxie.

Möglicherweise kann man im Spektrum eines schweren Sterns ablesen, dass er jetzt Silizium oder Sauerstoff fusioniert, und dass es deswegen sehr gut sein kann, dass er in wenigen Jahren detoniert. Aber das geht leider kaum, denn es lässt sich nicht feststellen, wie weit ein solcher Stern im Schalenbrennen ist, denn eine Spektralanalyse scheidet aus, denn so ein Stern ändert mit dem was er fusioniert nicht seinen Charakter, welche Elemente er bereits fusioniert. Man nimmt eben an, dass er eine Wasserstoffschale besitzt und im Kern Helium. Möglicherweise ist er aber auch schon bei der Kohlenstoff-Fusion. Jetzt könnt ihr aber selbst euch die Chance ausrechnen, wie wahrscheinlich es ist, ein Stern zu observieren und feststellen, dass er hochgehen wird, wenn in unserer Milchstraße vielleicht 3 bis 8 Supernovae pro Jahrtausend stattfinden wird. Möglicherweise war das letzte Jahrtausend aber ein Zufall, denn die Menschen haben bereits vor 6 Tausend Jahren begonnen den Himmel zu observieren und als dann etwa zur selben Zeit die ersten schriftlichen Aufzeichnungen entstanden sind, denke ich mir, dass es sicher erwähnenswert gewesen wäre, ein solches Ereignis stattgefunden hätte.

Kann eine Supernova von Beteigeuze ausgehend uns gefährden?

Nein. Die Gammastrahlung und Röntgenstrahlung von Beteigeuze kommt nicht zu uns. Das ist so, weil die Rotationsachse, sprich, der Süd- oder Nordpol von Beteigeuze nicht zu uns zeigt. Außerdem sind wir viel zu weit weg von einer möglichen Supernova von Beteigeuze. Stellen wir dennoch eine Rechnung auf, was für eine Energie zu uns kommen kann. Nehmen wir die Leuchtkraft von Beteigeuze. Die Leuchtkraft sagt uns, was für eine Leistung ein Stern abstrahlt. Der Mensch strahlt ganz ungefähr 80 W ab. Wir arbeiten mit dem niedrigen und dem hohen Wert. Der angegebene Wert im Buch (Kompendium der Astronomie, von Hans-Ulrich Keller, geboren 1943, ISBN 9783440162767, S. 270) wird die Variabel L1 sein und die von der Webseite slate.com L2.
Die Leuchtkraft wurde in Lʘ angegeben. Das ʘ steht für die Sonne.

Wir wissen, dass die Sonne auf ein m2 1367 W in einer Entfernung von 149 597 870 700 m = 1 AE nominal abstrahlt. Um also die ganze abgestrahlte Leistung zu kennen, müssen wir uns eine Kugel mit dem Radius von einem AE vorstellen und jeden Quadratmeter kennen. Die Sonne ist ein isotroper Strahler, d.h. die strahlt in den Raum absolut gleich ihre Leistung ab. Um die Sonnenleuchtkraft also zu kennen, haben wir die Formel Lʘ=4π × r^2 × (P/A). Dabei steht r für den Radius des gedachten Kreises, also r = 1 AE, P steht für die Leistung und A für die Fläche, da wir hier als Erstes benutzt haben. So setzen wir ein: Lʘ=4π × 149 597 870 700 m^2 × 1367 W/m ^ 2. So kommt heraus Lʘ=2,812 293 791 598×1023 m^2 × 1367 W/m ^ 2, also ist eine Sonnenleuchtkraft das Äquivalent zu Lʘ=3,844 405 613 115 × 10^26 W.  Die Abhängigkeit vom Radius und der Temperatur zur Leuchtkraft ist etwa die folgende (Es ist eine grobe Faustformel; die Werte liegen meist nur in der Nähe): L=R^2 × Teff^4 . Das Ergebnis scheint tatsächlich in Watt zu sein. (Vergebt mir, wenn ich euch sagen muss, dass ich nicht „der Mathe-Boss“ bin.) Das wäre bei der Sonne z.B. L=696 342 km^2 × 5 780 K^4 = 5,411 984 383 108 × 10^26 W = 1,407 755 821 770 Lʘ.

Aber die Leuchtkraft von Beteigeuze bei einer möglichen Supernova-Explosion ist eine andere. Es wird eine Steigerung bei der Supernova um das 16’000-fache der Leuchtkraft ausgegangen. Das wäre also dann L1 = 224 Mio. Lʘ; L2 = 2 Mrd. Lʘ. Also eine Abgestrahlte Leistung von L1 = 8,611 468 573 377 × 1034 W; L2 = 7,688 811 226 229 × 1035 W. Um jetzt herauszufinden, wieviel Leistung davon bei uns ankommt, müssen wir wieder die Kreisoberfläche als Entfernung wegen dem isotropen Strahler als Stern dividieren. P_rErde = P_SN/O = P_SN × 4π × r^2. PSN ist wieder die Leistung der Supernova, r wieder die Entfernung zur Erde. Auch wenn die Entfernungsangaben auch wieder sehr stark variieren, nehmen wir eine Parallaxe von 5,07 mas, eine Entfernung von r = 642,5 LJ. In Metern sind das m = r × 299 792 458 × 31 557 600 = 642,5 × 299 792 458 × 31 557 600 = 6,078 519 328 633 × 10^18 m. Jetzt setzen wir in die Formel ein: P_rErde = P_SN × 4π × r^2 = 8,611 468 573 377 × 10^34 W / (4π × 6,078 519 328 633 × 10^18 m^2) = 0,018 546 918 047 W/m^2. Für L2 sieht es wie folgt aus: P_rErde = P_SN × 4π × r^2 = 7,688 811 226 229 × 10^35 W / (4π × 6,078 519 328 633 × 10^18 m^2) = 0,165 597 482 563 W/m^2. Das bedeutet, dass eigentlich fast keine Leistung mehr von der Supernova bei uns ankommt. Und Gammastrahlen vom Ausbruch kommen ganz sicher auch nicht zu uns, da der Stern wie schon gesagt immer noch nicht richtig zu uns ausgerichtet ist.

Ihh! Ich muss mal mach einer Funktion suchen, Formeln einfügen zu können. Das sieht in Word einfach besser aus!

Quellen

Bildquellen:
https://upload.wikimedia.org/wikipedia/commons/7/72/Sternbild_Orion.jpg
https://upload.wikimedia.org/wikipedia/commons/5/50/Betelgeuse_AAVSO_2019.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fc/Stellar_evolutionary_tracks-en.svg
https://upload.wikimedia.org/wikipedia/commons/6/6b/HRDiagram.png
https://www.eso.org/public/images/eso0927b/

Inhaltliche Quellen:
https://de.wikipedia.org/wiki/Beteigeuze
http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=alf+ori&submit=SIMBAD+search
http://www.astronomerstelegram.org/?read=13341
http://www.astronomerstelegram.org/?read=13365
https://en.wikipedia.org/wiki/Betelgeuse
https://slate.com/technology/2014/09/betelgeuse-astronomers-give-it-100000-years-before-it-explodes.html
https://www.schuelerlabor-astronomie.de/wp-content/uploads/2019/06/Fanni-Fiedrich-Spektroskopie-des-Roten-Riesensterns-Beteigeuze.pdf
https://astro.uni-bonn.de/~deboer/praktikant/sternent.html
https://de.wikipedia.org/wiki/Supernova
https://www.youtube.com/watch?v=dUf2ZHtF2IA
ISBN 9783440162767, S. 270
ISBN 9783440162767, S. 280; und generell das Kapitel 5

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.