Lucy, eine Jupitertrojaner-Weltraummission

Die US-amerikanische Raumsonde Lucy der NASA wurde im vergangenem Monat Oktober am 16. von Cape Canaveral in Florida aus für eine Zwölfjahresmission gestartet. Ihr Ziel sind sechs verschiedene Asteroiden, fünf davon Jupitertrojaner. Die Raumsonde selbst erinnert dabei eher an eine Teleskopsammlung.

Die US-amerikanische Raumsonde Lucy der NASA wurde im vergangenem Monat Oktober am 16. von Cape Canaveral in Florida aus für eine Zwölfjahresmission gestartet. Ihr Ziel sind sechs verschiedene Asteroiden, fünf davon Jupitertrojaner. Die Raumsonde selbst erinnert dabei eher an eine Teleskopsammlung.

Zahlen zur Mission

Wann?         Am 16. Oktober 2021, um 11:34:00,192 Uhr MESZ (CEST)
Wer?          NASA Goddard, SwRI (Southwest Research Institute)
Trägerrakete? Atlas V 401 (AV-096)
Was?          eine Erkundungsmission zu den Trojanern des Jupiters der NASA
              im Rahmen des Discovery-Programms
Ziel:         ein Asteroid des inneren Asteroidengürtels, (52246)
              Donaldjohanson, danach L4 und L5 der Jupiterumlaufbahn,
              genauer die Trojaner, (3548) Eurybates, (15094) Polymele,
              (11351) Leucus, (21900) Orus, und (617) Patroclus, wobei nur
              Patroclus ein L5-Trojaner ist
Start von:    USA, Florida, Cape Canaveral, SLC-41
Masse:        Trockenmasse: 821 kg, inklusive Treibstoff: 1 550 kg,
              komplette Rakete beim Start
Kosten:       981 Mio. US $, das sind umgerechnet 855 Mio. €
Der Raketenstart von der Erde war ein Nachtstart dieses Mal und völlig geglückt. Hier sieht man die Trägerrakete Atlas V 401 wenige Sekunden nach dem Start. Ganz oben sitzt die Raumsonde geschützt in der aerodynamischen Verkleidung, da, wo die Rakete kurz vor dem nach oben zeigenden Ende breiter wird. Bildquelle: https://blogs.nasa.gov/lucy/2021/10/16/nasa-ula-launch-lucy-mission-to-fossils-of-planet-formation/; https://blogs.nasa.gov/lucy/wp-content/uploads/sites/323/2021/10/Lucy-Launch-Photo-1802×2048.jpg

Übersicht

Lucy ist eine geplante NASA-Raumsonde im Rahmen des Discovery-Programms, die fünf (sieben mit Doppelasteroiden mitgezählt) Jupiter-Trojaner ansteuern wird, also Asteroiden, die auf der gleichen Umlaufbahn wie der Jupiter, die Sonne umrunden und entweder vor oder hinter dem Jupiter kreisen, im L4 oder im L5. Alle Zielasteroiden werden in Flybys von Lucy erforscht werden. Die Nutzlast besteht aus drei Instrumenten: einem hochauflösenden visuellen Kamerasystem, einem optischen und Nahinfrarot-Spektrometer und einem thermischen Infrarotspektrometer.

Lucy wurde nach einem Fund von fossilisierter Knochen der Spezies Australopithecus afarensis benannt, ein Vorfahre des Menschen, der vor 3,9 bis 2,9 Millionen Jahren auf der Erde verweilte. Dieser Fund brachte einen großen Einblick in die Evolution der Spezies, die dann später zu in den Menschen überführte. Von den Trojanern auf der Jupiterbahn erhofft man sich das Gleiche, nur über unser Sonnensystem.

Entwicklung und Geschichte zu Lucy

Einer der Prioritäten der NASA im Planetary Science Decadal Survey (evtl. grob übersetzt als „Zehnjährige planetarische Untersuchung“) von 2013-2022 ist die Erforschung der Jupitertrojaner. Zu denen wurden schon erdgebundene Beobachtungen getätigt, sowie Beobachtungen mit dem WISE (Wide-field Infrared Survey Explorer), ein Weltrauminfrarotteleskop, welches Ende 2009 gestartet wurde.

Die Konzeptidee für Lucy als Jupitertrojaner-Weltraummission wurde am 05. November 2014 im Rahmen der Ausschreibung für die nächsten Missionen des Discovery-Programms, welche bis Februar 2015 lief, veröffentlicht. Es wurden 28 Vorschläge zu Weltraummissionen im Rahmen des Discovery-Programms vorgelegt. Die Vorschläge sollten bis Ende 2021 startbereit sein.

Am 30. September 2015 wurde Lucy als Finalist von fünf verschiedenen Finalisten ausgewählt. Diese waren DAVINCI, NEOCam, Psyche und VERITAS. Für die weitere Planung und um Konzeptstudien zu veröffentlichen, haben alle Finalisten-Vorschläge 3 Millionen US-Dollar erhalten. Am 04. Januar 2017 wurden Lucy und Psyche final ausgewählt, eine Mission, die den Asteroiden (16) aufgrund seiner offenbar existierenden Metallvorkommen erforschen soll.

Dass Lucy im Oktober 2021 mit einer Atlas V 401 Rakete starten wird, wurde am 31. Januar 2019 von der NASA angekündigt. Die Gesamtkosten für den Start wurden auf 148,3 Millionen US-Dollar geschätzt. SpaceX protestierte dagegen, dass Lucy mit einer Atlas-V-Trägerrakete ins All befördert wird, weil sie selbst ja Lucy viel günstiger ins All befördern könnten. Schon eine kurze Zeit danach zog SpaceX seinen Protest wieder zurück.

Am 28. August 2020 hat Lucy laut NASA den KDP-D (Key Decision Point-D; dt. “Hauptentscheidungspunkt-D“) mit grünem Licht erreicht. Damit konnten nun alle Instrumente an die Raumsonde angebracht werden und die Raumsonde strengen Tests unterzogen worden. Am 30. Juli 2021 wurde die Lucy an Bord einer C-17-Maschine nach Florida für Startvorbereitungen geflogen, zwei Monate später wurde Lucy dann endgültig in die aerodynamische Schutzverkleidung eingekapselt.

Und danach … am 16. Oktober 2021 gegen 09:34 UTC, das ist 11:34 MESZ/CEST, wurde die Lucy an Bord einer Atlas-V-401-Trägerrakete von Cape Canaveral aus gestartet, am ersten Tag des 23-Tages-Zeitfenster.

Die laufenden Raketentriebwerke wenige Augenblicke nach dem Start. Bildquelle: NASA/Bill Ingalls; https://images-assets.nasa.gov/image/
NHQ202110160007/NHQ202110160007~medium.jpg

Der Raketenstart verlief problemlos, die Flugbahn von Lucy wurde perfekt getroffen, sodass keine Kurskorrekturen notwendig gewesen sind, wie es eigentlich geplant wäre.
Am 19. Oktober wurde klar, dass einer der beiden Solarpanele sich nicht vollständig geöffnet hat. In den folgenden Tagen beschäftigte sich ein Anomalie-Team mit der Frage, wie Lucy weiter vorgehen soll, und ob dieser Zustand sogar so gelassen werden sollte, da es theoretisch den Betrieb der Raumsonde nicht stark beeinträchtigt. Am 27. wurde klar, dass das zweite Solarpanel-Modul nur ca. 90 Prozent der erwartenden Energie liefert. Bis zum 08. November war klar, dass zumindest alle Instrumente wie geplant funktionsfähig sind. Weitere Aktionen zu dem Solarpanel-Problem werden erst ab dem ersten Dezember durchgeführt.

Zeitplan der Mission

Unser Sonnensystem in Bewegung: Sonne in der Mitte, dann Merkur, Venus, Erde und Mars, außen der Jupiter und die zwei Ansammlungen sind die Trojaner auf beiden Seiten des Jupiters. Bildquelle: http://lucy.swri.edu/img/
trojans_nolabels.gif

Wie bekannt soll die Raumsonde Lucy in den ersten zwölf Jahren sechs Asteroiden anfliegen, vier L4-Jupitertrojaner, ein L5-Jupitertrojaner und ein Asteroid des Asteroidengürtels. Außerdem wird Lucy drei Flybys an der Erde manövrieren. Anbei noch eine Animation der Flugroute.

Hier sieht man genau die Flugbahn der Raumsonde Lucy. Bildquelle: Phoenix7777, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons; https://upload.wikimedia.org/
wikipedia/commons/7/7b/Animation_of_Lucy%27s_
trajectory_around_Sun.gif

In dieser Webseite kann man die Position von Lucy relativ zum inneren Sonnensystem plus Jupiter sich näher ansehen: https://whereislucy.space/

Eine Tabelle der Vorbeiflüge der Raumsonde Lucy an allen Objekten bis zum Ende der Primärmission nach März 2033. Bildquelle: selbst getan; Informationen aus der englischen Wikipedia, Small-Body Database, zweite Werte nach dem Komma aus einem PDF. Hinweis: der Durchmesser von 617 Patroclus-Menoetius ist der mittlere gemeinsame Durchmesser, Patroclus hat einen Durchmesser von 113 km und Menoetius von 104 km in Wahrheit. Link zum vollen Bild hier.
Künstlerische Vorstellung der Asteroiden bei den Jupitertrojanern basierend auf den gegebenen Daten, Größenverhältnisse und durchschnittliche Farben dürften stimmen. Bildquelle: Slide 3 aus https://www.lpi.usra.edu/sbag/meetings/jan2019/presentations/Wednesday-AM/Marchi.pdf

Nach dem Lucy 617 Patroclus besucht hat, fliegt Lucy in einen speziellen Orbit, welcher der Raumsonde erlaubt, zwischen beiden Trojanergruppen bei den Lagrangepunkten L4 und L5 hin und her zu fliegen (siehe weiter unten). Nachdem Lucy 617 Patroclus besucht hat, ist der offizielle Teil der Mission vorbei und wenn die Raumsonde bis dahin durchhält, dann wird die Mission als geglückt betrachtet.

3548 Eurybates und 617 Patroclus sind Doppelasteroiden, deren Doppel heißt Queta und Menoetius respektive.

Aufbau

Lucy am 29.09.2021 in Astrotech Space Operations Facility in Titusville. Gerade wird Lucy in die Luftschleuse gefahren. Das dunkle Dreieck stellt das eingefahrene Solarpanel dar, das kegelartige Ding an der linken Seite die Antenne und das Teil, welches rechts-oben etwas vom Körper abhängt, wird die Instrumentenplattform sein. Bildquelle: NASA/Ben Smegelsky; https://images-assets.nasa.gov/image/KSC-20210929-PH-JBS01_0039/KSC-20210929-PH-JBS01_0039~medium.jpg

Der Körper der Raumsonde Lucy ist etwa so groß wie eine Abstellkammer für Essen, oder vielleicht wie ein Kleinwagen (zwar vielleicht kein Smart, aber dennoch klein). Rechnet man die Solarpanele dazu, ist die Raumsonde gleich so groß wie ein Segelflieger oder so etwas in der Art. Sein Gewicht mit 821 kg ohne und 1 550 kg mit Treibstoff erinnert von der Masse her eher an den Perseverance-Marsrover, der am Jezero-Krater die geologische Vergangenheit des Mars studiert. Die Solarpanele sind zehneckige Scheiben auf den gegenüberliegenden Seiten der Raumsonde, ihre Spannweite beträgt ca. 7,3 Meter und ihre Leistung am sonnenfernsten Punkt ihrer Reise soll zirka 504 Watt bringen. Zusammen mit den Solarpanelen erinnert Lucy eher an InSight, welcher sich in den Marsboden für seismografische Daten gebohrt hat und Informationen über den Planetenkern vom Mars aufbringt. An der Seite der Hülle der Raumsonde befindet sich außerdem noch eine zwei Meter große Hochleistungsantenne.

Wissenschaftliche Experimente und Instrumente

Die Instrumentenplattform als Schema. Bildquelle: Ausschnitt von http://lucy.swri.edu/img/graphics/
LucyPoster_Mission_of_Discovery.pdf
Die Instrumentenplattform (IPP) als 3D-Ansicht. Bildquelle: http://lucy.swri.edu/img/LucyIPP.png

Für die Weltraummission zu den Jupitertrojanern braucht Lucy natürlich Instrumente für die wissenschaftliche Arbeit. Darunter kommen Spektrometer und Kamerasysteme unter anderem vor. Die wissenschaftlichen Experimente sitzen alle auf einer Instrumentenplattform, um alle Instrumente gleichsam ausrichten zu können. Listen wir alle Experimente mal alle auf.

  • L’Ralph:
    Bilderzeugungsgerät für das sichtbare Licht (400 bis 850 nm) inklusive Infrarotspektrometer (1 bis 3,6 µm), also eigentlich zwei verschiedene Instrumente: MVIC (Multispectral Visible Imaging Camera) und LEISA (Linear Etalon Imaging Spectral Array).  Innerhalb der Optik ist ein Lichtzerstreuer, was das sichtbare Licht in den MVIC schickt, und das Infrarotlicht zur LEISA. L’Ralph basiert auf dem Ralph-Experiment auf der New Horizons (die Pluto-Raumsonde). Eingesetzt wird es, um die Zusammensetzungen von Wassereis und andere Eise, Silikaten, und organische Materialien auf der Oberfläche zu analysieren, das macht MVIC und LEISA mit ausgewählten Bändern (z.B. ein violettes Band für Troilit (Eisenkies)) des elektromagnetischen Spektrums, welche besonders sensitiv für ausgewählte Stoffe sind. Die Optik des gemeinsamen Instruments hat eine Öffnung von 7,5 Zentimetern und eine Brennweite von 45 Zentimetern. L’Ralph benötigt eine Leistung von 25,1 Watt, also recht wenig, so wie eine etwas dunklere Bürolampe, jedoch hat es eine Masse von 31 kg, was nicht vergleichbar mit einer Bürolampe sein dürfte. Die erstaunliche Leistung des Instruments macht es auch nötig, dass es eine Speicherkarte von 256 Gigabits (32 Gigabytes) enthält. MVIC hat eine maximale Auflösung von 6 Bogensekunden pro Pixel und LEISA 16,5 Bogensekunden pro Pixel, das sind jeweils eine 5-Pixel-Auflösung von 145 Meter und 400 Meter auf 1000 Kilometer.
  • L’LORRI:
    Das ist quasi die Hochleistungskamera an Bord der Lucy. Auch dieses Gerät stammt von dem LORRI-Äquivalent von der New Horizons ab. Das Gerät hat eine Masse von 12 kg und verbraucht nur 10,6 Watt, was ungefähr auch die Leistung vom Ladestrom eines Handys sein dürfte. Im Prinzip ist es ein sogenanntes Ritchey-Chrétien-Teleskop, genauso ein wie das Hubble-Weltraumteleskop. Die Öffnung ist 20,8 cm weit und die Brennweite (engl. focal length) liegt 262 cm weit weg. Das Instrument hat eine Pixelauflösung von 14 Metern bei 1000 Kilometern Entfernung, sodass Objekte mit 5 Pixeln (70 m) klar erkennbar sind. Das sind 14,4 Bogensekunden und 2,9 Bogensekunden bei einem Pixel. Dass die Kamera möglichst risikolos funktioniert, wurde auf ein Fokussiersystem, sowie sich bewegende Teile verzichtet, die Optik ist größtenteils aus Siliziumkarbid, um Wärme gut abzuleiten und nicht zu stark bei Temperaturdifferenzen ausdehnen.
  • L’TES:
    L’TES steht für Lucy’s Thermal Emission Spectrometer (dt.: Lucys Wärmeemissionsspektrometer), dieses Instrument stammt diesmal nicht von New Horizons ab, sondern von dem OTES-Instrument einer anderen laufenden Asteroidenmission namens OSIRIS-Rex, jedoch stammt die Elektronik von der neueren Marsmission Hope der Vereinigten Arabischen Emirate VAE ab. Und genau dafür detektiert es ferne Infrarotstrahlung, welche laut der Planck’schen Schwarzkörperstrahlung essentiell ist für die Wärmeausstrahlung bei diesen Temperaturen, die erwartet sind. L’TES beinhaltet ein Teleskop mit einem Öffnungsdurchmesser von 15,2 Zentimeter, welches das ferne Infrarot in kleine Detektoren leitet, die wiederum die Temperaturen messen. Anders als die anderen Instrumente ist dieses kein echtes Bilderzeugungsgerät, das zeigt sich auch an der viel kleineren Datenmenge, die durch das L’TES entsteht, ist also eher wie ein Thermometer, der aus der Ferne misst. Durch die Daten kann man eine Karte (eine Karte ist nicht wirklich ein Bild) vom anvisierten Asteroiden erstellen. Das L’TES verbraucht eine Leistung von 17,6 Watt, was sehr vergleichbar mit den anderen Instrumenten ist.

L’TES wird die physikalischen Eigenschaften des Regoliths durch Messung der thermischen Trägheit untersuchen. Die thermische Trägheit ist ein Maß dafür, wie langsam sich ein Objekt erwärmt oder Wärme abgibt. Kleinere Partikel haben eine geringe thermische Trägheit; so erwärmt sich beispielsweise Sand an einem Strand tagsüber schnell und kühlt nachts schnell ab. Größere Partikel haben eine hohe thermische Trägheit; im Vergleich zum Sand erwärmt sich ein Gehweg tagsüber langsam und kühlt nachts langsam ab. Durch die Messung der Temperatur zu verschiedenen Tageszeiten auf dem Asteroiden kann das Wissenschaftsteam die thermische Trägheit messen und daraus ableiten, wie viel Staub, Sand oder Gestein im Regolith vorhanden ist. L’TES könnte auch Unterschiede in der thermischen Trägheit auf einem einzelnen Asteroiden aufspüren, was mit erdgebundenen Teleskopen nicht möglich wäre.

schreibt das SwRI auf ihrer Webseite (übersetzt)
Die TTCam von Lucy hat bereits eine schöne Erstaufnahme eines ca. 11 × 9 Bogengrad großes Sichtfelds im Sternbild Fisch gemacht. Bildquelle: http://lucy.swri.edu/2021/11/16/OneMonthInSpace.html; http://lucy.swri.edu/img/t2cam_first_images.png
  • T2CAM:
    Die TTCam, oder T2Cam ist eine Navigationskamera aufgeteilt in zwei Linsen. Die Bilder, die aus der TTCam kommen, haben mit einer maximalen 5-Pixel-Auflösung von 375 Metern auf 1000 km eine ähnliche Auflösung wie die LEISA von L’Ralph, operiert jedoch im sichtbaren Spektrum von ca. 400 nm bis 800 nm und nicht im Infraroten. Es wird zur Ausrichtung der Raumsonde genutzt, und als unterstützende Einheit in der kompakten und mehrinstrumentigen Bildaufnahme der Asteroiden. Sein Sichtfeld hat eine Größe von ungefähr 10,8 × 8,1 Bogengrad (°).
  • (High Gain Antenna):
    Die Hochleistungsantenne (mithilfe der anderen Telekommunikationshardwares) bestimmt die Masse der Trojaner und Donaldjohanson anhand der Dopplerverschiebung des Funksignals. Viel mehr kann ich darüber leider auch nicht sagen.
  • (Plakette):
    Auch bei der Raumsonde Lucy wird es eine Plakette geben, auf der Goldstücke irdischer Kultur vorhanden sind (logischerweise wegen Lucy auch ein Beatles-Song). Da die Raumsonde sehr wahrscheinlich nie das Sonnensystem verlassen wird, können die Menschen die Plakette in mehreren Hundert Jahren wieder finden und als eine Art Zeitkapsel verwenden.

Weblinks:

Quellen:

Astronomische Seltenheit – Zum Jahresende 2020

Große Konjunktion aus Jupiter und Saturn am 21.12.2020

Die Große Konjunktion ist ein wiederkehrendes Ereignis der Planeten Jupiter und Saturn, zu dieser Zeit befinden sie sich äußerst nahe am nächtlichen Himmel. Die Annäherung der Planeten dauert einige Monate und in dieser Zeit entfernen sie sich auch einige Male, denn wir beobachten beide Planeten von der Erde aus, die sich auch um die Sonne bewegt. So kommt es nämlich, dass die Planetenbewegung innerhalb eines Erdenjahrs eine Schleifenbewegung macht. Es ist super selten, denn die Umlaufszeiten von denen dauern beim Jupiter 11 Jahre, 314 Tage und 19 Stunden, sowie beim Saturn 29 Jahre, 166 Tage 19 Stunden.

Hier sind die Planetenschleifen nochmal visualisiert. Da sich die Erde E und der Mars M um die Sonne S drehen und die Erde schneller als der Mars sich bewegt, sowie wir Erdenbeobachter nicht im Zentrum der Bewegungen stehen, kommt es, dass von der Erde aus der Mars eine Schleife macht. Bildquelle: Frog23, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons; https://upload.wikimedia.org/wikipedia/
commons/b/b3/Mars_Loop.gif
Die projizierten Planetenpositionen in 7 Fälle in der Grafik gezeigt. Bildquelle: Schorschi2, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons; https://upload.wikimedia.org/wikipedia/
commons/5/59/Konstruktion_Planetenschleife.png

Wenn wir jetzt wissen wollen, wie oft eine Große Konjunktion geschieht, müssen wir die Umlaufszeiten vergleichen. Im Verhältnis gesetzt, entdecken wir, dass Saturn und Jupiter im 2:5-Verhältnis stehen (genau: 2:4,966 65). Diese Zahl bedeutet, dass nach zwei Saturnumläufe fünf Jupiterumläufe geschehen. Also sind nach ca. 58 Jahren und 334 Tagen Jupiter und Saturn ungefähr wieder in ihrer Ausgangsposition. Natürlich, da das Verhältnis nicht perfekt ist, wird die Zusammenkunft um 8,094 7 Grad jedes Mal weiter nach Westen verschoben.
Jetzt gibt es zwei Ansätze auf die Zeit zu kommen, die es braucht, damit es wieder zu einer Großen Konjunktion kommt. Einmal können wir nach deren Umläufe schauen und die mittlere Winkelgeschwindigkeit berechnen und schauen dann, nach was für einer Zeit sie wieder beieinanderstehen. Oder man bemüht die Synodischen Umlaufszeiten der beiden Planeten, das ist die Zeit, die es zur nächsten Opposition dauert, also wenn die Erde von der Sonne aus gesehen in einer Linie mit dem Zielplaneten steht. Diese Zeit variiert, je nachdem wie nah man am Zielplaneten ist, also wie ähnlich die Entfernung zur Sonne (oder die Umlaufszeit) der beiden Planeten ist, die man für die Synodische Umlaufszeit ansieht. Kurz: Die Zeit, die die Erde braucht, wieder auf einer Linie mit einem anderen Planeten zu sein, wobei der andere Planet sich ja auch noch bewegt. Wenn der Planet weiter von der Sonne weg ist als die Erde, benötigt die Erde immer mehr als ein Jahr wieder auf gleicher Linie zu sein, ist der Planet näher an der Sonne dran, dann kann diese Zeit auch kürzer sein, wenn der Planet aber mehr als 50 % der Sonne-Erde-Entfernung (AE = Astronomische Einheit) hat, dann ist die Synodische Umlaufszeit größer.

Wenn man die Tagesanteile der Bewegung im Sonnenumlauf des Jupiters, mit dem des Saturns in Differenz setzt, also der 4 332,589te Teil des Sonnenumlaufs des Jupiters minus dem 10 759,22te Teil des Sonnenumlaufs des Saturns ergibt einen 7 253,455ten Teil, also 7 253,455 Tage zwischen zwei Großen Konjunktionen mit diesem Ansatz und diesen Daten
Die Synodische Umlaufszeit des Jupiters beträgt 398,88 Tage und die des Saturns 378,09. Wenn man diese ins Verhältnis setzt, kommt 0,94 787 906… heraus. Wenn man diese Zahl von der 1 abzieht, erhält man 0,052 120 939… . Wenn man diesen Wert umkehrt, bekommt man 19,186 147 periode, multipliziert mit der Anzahl an Tagen im Jahr bekommt man 7 007,855 Tage.

Ich denke die obere Variante ist genauer, denn wir wissen hier die Umlaufszeit auf einige Minuten genau und die Synodische Umlaufszeit ist da nicht so sehr vergleichbar. 7 253,455 Tage sind 19 Jahre, 313 Tage und 14 Stunden. Wenn also die Große Konjunktion von 2020 am 21. Dezember um 18:30 Uhr UTC (circa) ist, wäre ja rein theoretisch die nächste dann am 30. Oktober 2040 um 08:30 UTC (circa). Tatsächlich schreibt die Tabelle in der Wikipedia, dass die nächste Große Konjunktion am 31. Oktober 2040 um ca. 12 Uhr UTC sein wird. Vermutlich haben sie mit noch genaueren Werten gerechnet, unsere Rechnung weicht auch nur um wenige Stunden ab.

Einer meiner “Schau”-Videos auf YouTube, hier über die Große Konjunktion.

Und zum Schluss noch was über allgemeine Daten. Jupiter und Saturn sind beide Gasriesen und umlaufen die Sonne in ca. 770 Millionen Kilometer und 1 425 Millionen Kilometer Entfernung, (während der Konjunktion: 762,83 Mio. km und 1 494,28 Mio. km, Die Entfernung untereinander beträgt 733 212 000 Kilometer). Jupiter hat einen volumetrischen Radius von 69 911 Kilometern und Saturn 58 232 Kilometer. Jupiter hat eine Masse von 317,83 Erden während der Saturn eine Masse von 95,16 Erden hat. Die nächste Annäherung von Jupiter und Saturn ist bei ca. 49,1 Grad Nord und 8,5 Grad Ost um etwa 19:26 MEZ am 21.12.2020 und damit nicht sichtbar, da die beiden Objekte zu dem Zeitpunkt um ca. 18:53 MEZ untergehen. Lörrach: 19:01; Flensburg: 18:22. Je nach Örtlichkeit lohnt es sich am 21. Dezember gegen 17:30 bis 18:00 zu beobachten, da Jupiter und der Saturn von der Sonne nur etwa 30 Grad (ungefähr 3 Hände bei ausgestrecktem Arm) entfernt sind, und es schwierig wird die Konjunktion zu beobachten, da wenn es hierzulande dunkler wird, wandern die zwei Planeten immer stärker Richtung Horizont, dort wo sich auch am meisten Dunst aufhält. Also ist es auch ratsam an eine höhergelegene Stelle, und auch möglichst weit Richtung Südwest dafür fahren, zu beobachten, zum Beispiel am Feldberg. Wie gerade eben erwähnt, stehen Jupiter und Saturn Richtung Südwesten und sind übrigens kaum zu übersehen: Jupiter hat eine Helligkeit von ca. -1,97 mag und Saturn +0,63 mag mit einer minimalen Distanz von 00°6′6″, das ist etwa nur ein Fünftel des scheinbaren Erdmonddurchmessers!

Quellen:

Die Raumsonde OSIRIS-REx begreift den Asteroiden Bennu

Heute früh, am 21.10.2020 kurz nach Mitternacht schon, gegen 00:12 MESZ hat die Raumsonde OSIRIS-REx der gleichnamigen 7-jährigen Mission der NASA (Kooperation mit der JAXA wegen ähnlichem Raumfahrtprogramm mit der Hayabusa-2-Mission), gestartet am 09. September 2016 mit einer Atlas V 411, vermutlich 60 Gramm Gestein und 26 cm³ feine Körper von der Oberfläche von Bennu (101955) eingesammelt. Dazu war sie dem Asteroid bis auf wenige Meter nahekommen. Der Greifarm des OSIRIS-REx (TAGSAM = Touch-And-Go Sample Acquisition Mechanism) wird die Aufnahme des Gesteins durchführen.

File:OSIRIS-REx Artist’s conception.png
Künstlerische Darstellung, Computergrafik von OSIRIS-REx. Bildquelle: https://upload.wikimedia.org/wikipedia/commons/c/c0/OSIRIS-REx_Artist%E2%80%99s_conception.png; NASA/GSFC, Public domain, via Wikimedia Commons
Eine Bildserie des Asteroiden Bennus, aufgenommen am 03. Dezember 2018 von der OSIRIS-REx-Raumsonde aus einer ENtfernung von ca. 80 km. Von dort aus sah die Raumsonde den Bennu als Fläche von nur ca. 2/3 der Vollmondgröße. Bildquelle: https://upload.wikimedia.org/wikipedia/
commons/9/9a/Asteroid-Bennu-OSIRIS-RExArrival-GifAnimation-20181203.gif
; NASA/Goddard/University of Arizona, Public domain, via Wikimedia Commons

Bennu ist ein kohlenstoffhaltiger, relativ dunkler Asteroid hat einen Durchmesser von 494 Meter und er könnte mit einer geringen Wahrscheinlichkeit von 0,037 Prozent nach dem Jahre 2135 im 22. Jahrhundert mit der Erde kollidieren. Seine Oberfläche und seine Gestalt gleichen zweier Kegel, die mit ihren Kreisflächen zusammengesteckt wurden. Auf seiner Oberfläche sind lauter Steine, die anscheinend nur auf dem Asteroiden draufliegen. Das zeigt sich in den Bildern.

NASA’s Goddard Space Flight Center, Public domain, via Wikimedia Commons

Bevor OSIRIS-REx Anfang Dezember 2018 bei Bennu ankam, dachte man aufgrund der bisherigen Datenlage, dass die Oberfläche Bennus sandig und relativ “glatt” sei. Als das Gegenteil der Fall war, war klar, dass das OSIRIS-REx-Team improvisieren muss. Das Problem: der “Material-Abgreif-Platz” namens “Nightingale” (deutsch: NAchtigall), der ausgewählt wurde, hat nur 16 Meter im Durchmesser, was viel kleiner als gedacht ist und die Region außen herum beherbergt viele große Felsen. Aus diesem Grund ist die Koordination wichtig. Nein, noch besser, die OSIRIS-REx-Raumsonde muss sich selbst kontrollieren, denn in ca. 334 Mio. km, wie die Small-Body Database der NASA zeigt, kommen Signale von der Sonde erst nach knapp 1 114,77 Sekunden, das sind 18 Minuten und fast 35 Sekunden, an und ein Signal zurück braucht genauso lange.

File:OSIRIS-REx Checkpoint Rehearsal.gif
Der erste Annäherungstest am 14. April 2020, OSIRIS-REx kam hier bis auf 65 Meter etwa runter, bevor sie ihr Triebwerk zündete und den test beendete. Die Technik, welche im GIF sichtbar ist, ist der TAGSAM-Sammelarm. Bildquelle: https://upload.wikimedia.org/wikipedia/
commons/9/99/OSIRIS-REx_Checkpoint_Rehearsal.gif; NASA/Goddard/University of Arizona, Public domain, via Wikimedia Commons

Die Methode des Abgreifens von den 60 Gramm Material von Bennu verlief etwa wie folgt: OSIRIS-REx näherte sich zunächst dem Asteroiden in einer elliptischen Bahn für einige Stunden an und ging dann auf 125 Meter herunter und ab da startete OSIRIS-REx den elliptischen Orbit zu verlassen und wie ein Raubvogel auf ihre Beute zu stürzen. Wenige Minuten später passte die Raumsonde noch ihre Flugbahn nach unten der Rotation des Asteroiden an und näherte sich auf bis 5 Meter an, der Punkt, an dem die Sonde selbst entscheidet, sich selbst in Sicherheit zu bringen, falls das Risiko um ihre Sicherheit zu groß würde. Als sie diesen Punkt erreicht hat, erreichte sie für Sekunden mit ihrem Greifarm (TAGSAM) die Oberfläche, den die Sonde bereits um 19:50 MESZ am Vortag (20.10.2020) ausgefahren hatte. Dann ließ sie Stickstoff aus ihrer Patrone ausstoßen, damit Staub und kleine Steine aufgewirbelt werden und so Material von dem Ort der Probe entnommen. Danach zündete sie ihre Triebwerke und kehrte nach einigen Minuten in einen Orbit um Bennu zurück.

Ob tatsächlich Material gesammelt wurde und auch genügend, ist gar nicht so leicht und schnell festzustellen. Alle anderen Events sind aber wie gewollt eingetroffen und das Team war damit erstmal glücklich. Die nächsten Tage soll per Zentripetalkraft – sprich die Sonde wird dafür einen Moment um sich selbst rotieren – rechnerisch ermittelt werden, wieviel Gestein und Material eingesammelt wurde, denn je mehr gesammelt wurde, mit desto mehr Kraft wird das gesammelte Gestein von der Sonde “weggedrückt” werden. Eine erste Bestätigung des erhofften Erfolgs soll bereits heute per Video der Aktion kommen. Ob das Material Einsammeln ein Erfolg war, wird am 30.10 entschieden.

Eine Übersicht der 4 finalen Einsammel-Regionen, welche alle hier als ca. 30×35 m dargestellt werden. Jeder der vier Ausschnitte macht ca. 0,7 – 0,75 % der Bennu-Oberfläche aus. Bildquelle: https://upload.wikimedia.org/wikipedia/commons/e/e5/OSIRIS-REx_candidate_sample_sites_on_Bennu.png; NASA/Goddard/University of Arizona, Public domain, via Wikimedia Commons

Am 12.01.2021 würde ein neuer Versuch stattfinden um mehr Material zu sammeln, falls OSIRIS-REx noch nicht genug Material gesammelt hat. Fall dem so wäre, würden sie es mit der Region “Osprey” versuchen, diese liegt in einem Krater nahe dem Bennu-Äquator. Am 3. März wird OSIRIS-REx dann den Asteroiden verlassen und am 24. September im Jahr 2023 wird eine Rückkehrkapsel zusammen mit der Probe sehr nahe der Erde gestartet werden und am selben Tag noch in der Wüste von Utah landen. Danach wird OSIRIS-REx in einem Sonnenorbit verbleiben.

File:OSIRIS-REx-diagram without labels.png
Schematischer Aufbau der OSIRIS-REx.
A: Rückkehrkapsel; B: TAGSAM; C: Sondenkörper; D: Solarmodule; E: Parabolantenne; f: Triebwerke; g: Sternsensoren; h: Antenne; j: Antenne; k: Heliumtank; 1: Lidar; 2: OLA; 3: OCAMS; 4: OTES; 5: OVIRS.

OSIRIS-REx ist ein Akronym für: Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer.

Bildquelle: https://upload.wikimedia.org/wikipedia/commons/9/9b/OSIRIS-REx-diagram_without_labels.png; NASA, Public domain, via Wikimedia Commons

OSIRIS-REx hat eine Leermasse von 880 kg, inklusive Treibstoff 2 110 kg, sie besteht auch noch aus zwei Solarpanele, die in der x- und y-Achse geneigt werden können, welche bis zu 3 Kilowatt im Maximum liefern. Die Raumsonde hat auch noch einige Kameras und Spektrometer, welche u.a. im Infrarot- und Ultraviolettbereich, sowie Röntgenbereich Bennu und seine Bestandteile im Spektrum zerlegen. Man erhofft sich von der Erforschung von Bennu weiteres Wissen um die Planetenentstehung vor 4,567 Mrd. Jahren, da Bennu original aus dieser Frühzeit stammt.

Ich für meinen Teil bleibe bei dem Thema weiter dran und freut euch auf wieder mehr in den nächsten Tagen. 🙂

Quellen:

Sensation: Haben wir Anzeichen für Leben in der Venusatmosphäre entdeckt?

Am 14.09.2020 gegen 16 Uhr, genaue Uhrzeit weiß ich nicht mehr, schrieb ich als Kurznews in die Seitenleiste von GSA:

Neueste Entwicklungen in der Astronomie zeigen, dass es große Mengen an Phosphane in der Venusatmosphäre gibt, das hat man durch spektrografische Analysen herausgefunden. Jetzt ist es so, dass es nicht viele Wege gibt, wie das Phosphan entstehen können. Das einfachste Molekül (Monophosphan) aus der Reihe der Phosphane ist eine Verbindung aus 3 Wasserstoffatomen und einem Phosphoratom und kann im Grunde nur biologisch oder im Labor entstehen. Die Zeichen auf Leben in der Venusatmosphäre waren schon gegeben. Während es auf der Oberfläche der Venus um die 450 °C bei ca. 91,5 Bar herrschen, gibt es in 40 bis 50 km Höhe angenehmere Werte. Die darüberliegenden Wolkenschichten schützen diesen Bereich vor harter UV-Strahlung und immer wieder auftauchende Verfärbungen der dichten Wolkenschicht zu sehen. Die russischen Venera-Raumsonden versuchten in den 70ern und frühe 80er die Venus zu erreichen, jedoch ohne großen Erfolg. Den gewaltigen Druck, Hitze und auch Schwefelsäure in der Venusluft hielten sie nicht lange aus. Über dieses Thema gibt es von der Royal Astronomical Society um 17:00 am 14.09 eine Pressekonferenz (und mit deutschsprachigen Kommentaren hier) und es folgt auch noch ein Beitrag auf GSA.

Genau! Und die Royal Astronomical Society (RAS) hat gemäß der Ankündigung ihre Pressekonferenz gegeben. Bereits einige Stunden vorher wurde von Presseleuten, die nicht unter einem „Embargo“ bis zur Pressekonferenz standen, „geleakt“. Einige Informationen mussten dann doch wieder gelöscht werden und so konnte eine zusätzliche Aufgeregtheit verbreitet werden. In der deutschen Astronomie-Szene auf YouTube haben dazu viele YouTube-Kanäle darauf aufmerksam gemacht und die Pressekonferenz, die ebenfalls auf YouTube veröffentlicht wurde, aber fand in einer Schaltung von dem mittlerweile gut bekannten Anbieter „Zoom“ statt. Was gibt es also über diese Ereignisse zu berichten?

Bevor wir die Pressekonferenz genau analysieren, werfen wir einen kurzen Blick auf die Zusammenfassung der in Nature Astronomy veröffentlichten Studie über dieses brisante Thema.

Measurements of trace gases in planetary atmospheres help us explore chemical conditions different to those on Earth. Our nearest neighbour, Venus, has cloud decks that are temperate but hyperacidic. Here we report the apparent presence of phosphine (PH3) gas in Venus’s atmosphere, where any phosphorus should be in oxidized forms. Single-line millimetre-waveband spectral detections (quality up to ~15σ) from the JCMT and ALMA telescopes have no other plausible identification. Atmospheric PH3 at ~20 ppb abundance is inferred. The presence of PH3 is unexplained after exhaustive study of steady-state chemistry and photochemical pathways, with no currently known abiotic production routes in Venus’s atmosphere, clouds, surface and subsurface, or from lightning, volcanic or meteoritic delivery. PH3 could originate from unknown photochemistry or geochemistry, or, by analogy with biological production of PH3 on Earth, from the presence of life. Other PH3 spectral features should be sought, while in situ cloud and surface sampling could examine sources of this gas.

Nature Astronomy / Jane S. Greaves, 
Anita M. S. Richards, 
William Bains et al. (https://www.nature.com/articles/s41550-020-1174-4)

Was der Google Übersetzer übersetzt als:

Messungen von Spurengasen in Planetenatmosphären helfen uns, andere chemische Bedingungen als auf der Erde zu untersuchen. Unser nächster Nachbar, Venus, hat Wolkendecks, die gemäßigt, aber hyperazid sind. Hier berichten wir über das offensichtliche Vorhandensein von Phosphingas (PH3) in der Venusatmosphäre, wo Phosphor in oxidierter Form vorliegen sollte. Einzeilige Millimeterwellenband-Spektraldetektionen (Qualität bis zu ~ 15σ) (Anm. von mir: 15 Sigma ist eine äußerst hohe Wahrscheinlichkeit) von JCMT- und ALMA-Teleskopen haben keine andere plausible Identifizierung. Atmosphärisches PH3 bei einer Häufigkeit von ~ 20 ppb wird abgeleitet. Das Vorhandensein von PH3 ist nach eingehender Untersuchung der Steady-State-Chemie und der photochemischen Pfade ungeklärt. Derzeit sind keine abiotischen Produktionswege in der Atmosphäre, den Wolken, der Oberfläche und dem Untergrund der Venus oder durch Blitz-, Vulkan- oder Meteoritenabgabe bekannt. PH3 könnte aus unbekannter Photochemie oder Geochemie oder in Analogie zur biologischen Produktion von PH3 auf der Erde aus dem Vorhandensein von Leben stammen. Andere spektrale PH3-Merkmale sollten gesucht werden, während in situ Wolken- und Oberflächenproben die Quellen dieses Gases untersuchen könnten.

Philip Diamond, der Direktor der RAS, beginnt mit einer knappen Begrüßung und Einleitung (z.B., dass sie 4 000 Astrophysiker und Geophysiker in der ganzen Welt beherbergen und betont die Internationalität der Organisation) und stellt die Teilnehmer der Videokonferenz vor. Da gäbe es die Prof. Jane Greaves von der Cardiff University, außerdem noch Cesaro Seeger und Dr. William Baines der MIT (Massachusetts Institute of Technology). Die Veröffentlichung der Studie hat insgesamt auch 19 Autoren von z.B. der East Asian Observatory, Cambridge Imperial College, The Open University, Royal Observatory Greenwich, vom ALMA in der chilenischen Wüste und der Kyoto Sango University. Abschließend stellt er den knappen Aufbau der Videokonferenz: es gibt kleine Präsentationen von den Teilnehmern der Pressekonferenz und hinterher die Pressefragen aus der Zoom-Schaltung.

Als die Jane Greaves beginnt ihre kleine Präsentation zu beginnen, haben sie ihre Studie in Nature Astronomy veröffentlicht. Sie fängt an von ihrer Beobachtung zu sprechen. Sie hätten Phosphan in der Venusatmosphäre entdeckt. Sie erklärt, dass die Aufregung der Wissenschaft daherkomme, dass Phosphan auf der Erde von Kleinstlebewesen ausgeschieden werde, welche in Sauerstoffatmosphären leben und dass man das auf die Wolken der Venus übertragen könne. Die Oberfläche der Venus wäre in Vergangenheit kühler als die heute sehr heiße Venus und dass dann daher möglicherweise die theoretischen Lebensformen herkämen. Allerdings wären die Lebensbedingungen heute in der Atmosphäre der Venus auf der Höhe von 40 bis 50 Kilometer wegen starkem währendem Wind und hochsauren Wolken ebenfalls unfreundlich, abgesehen davon, dass die Temperaturen von ungefähr 30 Grad Celsius dann doch erdähnlich seien.

Sie hätte bereits 2016 ihr Projekt gestartet in den Wolken der Venusatmosphäre nach Phosphan als Lebensanzeichen zu suchen. Sie habe es mit dem James Clerk Maxwell Teleskop der East Asia Observatory in Hawai’i versucht, welche gewisse Verbindungen zu der RAS habe. Gleichwohl mit dem ALMA (Atacama Large Millimeter/Submilimeter Array) in Chile.

Image of the James Clerk Maxwell Telescope against a starry background
Das James Clerk Maxwell Teleskop der East Asia Observatory auf dem Mauna Kea in Hawai’i als einer der größten Submilimeter-Teleskope der Welt. Will Montgomerie / EAO / JCMT Bildquelle: https://ras.ac.uk/sites/default/files/2020-09/Image-JCMT-Credit-Will_Montgomerie_EAO-JCMT.JPG

Okay, was heißt das? Nun, die Venus sei eine natürliche Radioquelle und die Gruppe hätte nach Radiosignale um die 1,123-Millimeterwellenlänge geschaut und kämen wohl von der mittleren Wolkenschicht. Das Phosphan könne jetzt die Radiowellen zum Teil absorbieren, sodass man im Spektrum Einschneidungen sehe. Die Absorption passiere bei einer sehr einzigartigen Wellenlänge und es hätte mit der Quantenrotation des Moleküls zu tun. Diese Berechnungen, wieviel an Phosphan es in der Venusatmosphäre, gemessen durch den Einschnitt des Phosphans in das empfangene Spektrum, gibt, habe Hideo Sagawa von der Kyoto Sangio University getätigt. Die Daten des Radioteleskopverbunds ALMA hätten dann nochmal die Existenz des Phosphans im Spektrum der Venus mit Zufriedenheit, allerdings auch unerwartet bestätigt. Hideos Model ergab eine Ansammlung von Phosphan-Molekülen in der Venusatmosphäre von ungefähr 20 ppb (parts per billion/Teile je Milliarden).

Einige Sekunden später bestätigt sie, dass diese Radiowellen von der Wellenlänge um den Einschnitt verursacht vom Phosphan aus der moderaten Zone der Venusatmosphäre komme. In dieser Zone (ca. 50 bis 60 km Höhe) ist der Druck bei etwa 1 Bar und etwas niedriger und bei ca. 20 bis 60 °C, also ziemlich lebensfreundlich, wenn da nicht die Schwefelsäure in den Wolken der Venus gäbe. Falls es dort tatsächlich Lebensformen gäbe, die das Phosphan produzierten, dann trieben sie sich in den „Hadley-Zellen“ herum, es sind großräumige Wettersituationen und in der Höhe, von der das Phosphan komme, würde es in einer dieser Hadley-Zellen sich bewegen. Die Hadley-Zellen wälzen die (Venus-)Luftmassen in der mittleren Schicht um und lassen die Luft zu den Polen treiben und wegen der dort kühleren Bedingungen abfallen und wieder zum Äquator wandern. Jetzt teilte sie mit, dass ihre Gruppe nur in der Nordhalbkugel der Venus Spuren von Phosphan entdeckt hätte.
Paul Rimmer von der Cambrigde University soll versucht haben mit einer Computersimulation der „Chemie“ der Venusatmosphäre den Ursprung des Phosphans zu ergründen. Mit Lebensformen, die nur ein Zehntel der Effizienz der irdischen Organismen aufweisen, könnte es dort Lebens geben. Dann wurde sie nochmal vorsichtig und sagte, dass sie vorsichtig seien, diese Entdeckung als den Beweis für Leben in der Venusatmosphäre anzuführen. Um zu zeigen, wie man theoretisch Phosphan sonst erklären könnte, gibt sie an Dr. William Bains weiter.

Er macht gleich weiter mit ein paar technischen Schwierigkeiten und erzählt, dass sie ein paar Jahre an einer Datenbank an möglichen chemischen Reaktionen in der Atmosphäre der Venus gearbeitet hätten. Er stellt ein Diagramm vor über den schematischen Aufbau der Venusatmosphäre und ein Model für die chemischen Vorgänge für die verschiedenen Atmosphärenschichten. Er erklärt einen möglichen Erklärungsansatz, dass Phosphan dort über einen ähnlichen Zyklus entsteht, wie die harte UV-Strahlung der Sonne aus Luftsauerstoffmolekülen Ozon entstehen lässt und so diese „freie Radikale“ entstehen lasse. Er zerschlägt dies jedoch und sagt, dass dieser Prozess zu wenig Phosphan hervorbringen könne. Er geht weiter zu spontanen Reaktionen und sagt, dass sie für diese Angelegenheiten zur Thermodynamik gehe und für jede mögliche Reaktion thermodynamische Berechnung laufen ließe. Sie hätten über 70 Reaktionen überprüft und dies alles könne nicht den einigermaßen hohen Phosphan-Gehalt von 20 ppb verursachen. Die dritte Überlegung war, dass die Steine und Felsen unter der Venusatmosphäre soviel Phosphan produzieren könne. Dazu benützten sie wieder die thermodynamischen Berechnungen und die Antwort viel wieder viel zu gering aus. Die Felsen und Vulkane und alles unter dem Boden könne so nach den Forschern auch nicht genügend Phosphan produzieren. Danach hätten sie mit weniger konventionellen Ideen versucht, inklusive Gewitter, Meteoriten und so weiter, doch auch dies könne die 20 ppb Phosphan nicht erzeugen. Aus diesem Grund hätten sie nur 2 mögliche Ideen für weitergehende Untersuchung dahingehend. Zum einen könnte es dort – in den Venuswolken, im Venusboden, in der Atmosphäre, egal wo – noch unbekannte chemische Vorgänge stattfinden, oder welche, die sie nicht bedachten, oder zum anderen die Existenz von Leben.

Daraufhin hätten sie erste Rechnungen für jene Kleinstlebewesen durchgeführt. Natürlich vorausgesetzt, dort gibt es Leben, welches biochemisch mit den irdischen Lebensformen kompatibel ist. Jedoch wären die Lebensbedingungen in den Wolken der Venus soweit ungemütlich, weil die Wolken dort aus mehr als 80 % aus Schwefelsäure bestünden. Schwefelsäure sei sehr aggressiv gegen viele Materialien, so etwa tausendmal saurer als Batteriesäure. Unter diesen Umständen haben sie sich viele Gedanken zu möglichen Leben gemacht. Er moderiert ab und gibt an Prof. Sarah Seeger weiter.

Artist's impression of Venus, with an inset showing a representation of phospine molecules
Eine künstlerische Darstellung der Venus mit einer eingebundenen Darstellung, welche Phosphanmoleküle schematisch zeigt, die in den hohen Atmosphärenschichten in den Wolken nachgewiesen wurden. ESO / M. Kornmesser / L. Calçada & NASA / JPL / Caltech (CC BY 4.0) Bildquelle: https://ras.ac.uk/sites/default/files/2020-09/eso-venusa.jpg; bzw.: https://www.youtube.com/watch?v=00hUbT6pbYY

Prof. Sarah Seeger fängt gleich damit an, dass sie nicht behaupten, dass es in der Venusatmosphäre gäbe, dass sie allerdings mithilfe ihrer Daten mit großer Sicherheit sagen können, dass auf der Venus Monophosphan gäbe und die Herkunft noch unklar sei. Sie wiederholt, was schon William Bains zuvor gesagt hat, dass die bisherigen Erklärungen die große Anzahl an Monophosphan-Partikeln in der Venusatmosphäre nicht ausreichend erklären könne. Phosphan sei auf der Erde eigentlich nur von anaeroben Bakterien und von Menschen bekannt. Auch hätten Jupiter und Saturn in ihren Atmosphären viel Phosphan, doch dort sei die Temperatur und der Druck, wie das Phosphan dort hätte entstehen können. Außerdem sei dort auch genug Wasserstoff dafür. Sie meint, dass ihr Team die Entdeckung des Phosphans in der Venusatmosphäre auch durch einen Einbruch im Infrarotbereich mithilfe von Spektroskopen auf der Erde bestätigen wolle. Sie erwähnt, dass schon einige Menschen vor tatsächlich bereits 50 Jahren wie Carl Sagan Lebens in der Venusatmosphäre vermutet haben wollen und sie spekuliert, dass mögliches Lebens in der Zeit, als die Ozeane von der Venus vor einigen Milliarden Jahren ins Weltraum entwichen sind, teilweise in die Wolkenschicht der Venus geraten sind und einige andere Lebewesen an der Oberfläche wegen der Hitze sich aufgelöst haben.

Danach zeigte sie wieder das Diagramm, welches schon William Bains gezeigt hat. Es stellt die Zonen in der Atmosphäre dar und wie Lebewesen mit dem Klimasystem der Temperatur-moderaten Wolkenschicht mitzirkulierten, also die Zone, aus der die Informationen wegen dem Phosphan kämen. Sie vermutet, dass eventuelle Lebensformen sich in den Wolken in den Tröpfchen ansammelten und wenn mit der Zeit in einigen Monaten die Tröpfchen schwerer werden, dass ein Teil der Tropfen abdampfe und die Tröpfchen wieder langsam nach oben gelänge und wieder in Tröpfchen gelangen würden.

Sie holt aus und erzählt zum Beispiel, dass fast jedes Sternsystem einen Planeten hätte und wie neue Generationen von Astronomen mit neuen Teleskope nach Lebenszeichen auf Exoplaneten suchen würden. Venus würde auf der Liste von astrobiologischem Interesse, in der sich neben der Erde der Mars, Jupiters Eismond Europa, Saturns Mond Titan und Saturns Eismond Europa befänden, deutlich nach oben steigen. Das Forscherteam hoffe nun auf mehr Motivation für zukünftige Venus-Raumfahrtmissionen, damit sie nach mehr und besseren Lebenszeichen oder sogar Leben selbst auf und in der Venus suchen.

Die Pressekonferenz geht nun über zu einer Art digitalen Fragerunde für Journalisten. Zuerst fragt Chris Linton William Bains nach genaueren Informationen über seine Erkenntnisse, dass das Phosphan auf jeden Fall nicht ausschließlich von herkömmlichen „natürlichen“ Prozessen kommen könne. Er erklärt, dass mögliche Reaktionen mit Säuren aus Phosphor und derartige Verbindungen nur 44 Milligramm Phosphor in der ganzen Venusatmosphäre erklären würden.

Ein nächster Fragesteller, dessen Name ich nicht wirklich verstanden habe, fragt, wie dieses Forscherteam zusammenkam und die Frage wurde von Prof. Sara Seeger damit beantwortet, dass William Baines und Prof. Jane Greaves schon einander etwas kennen, geschuldet zur Affinität zu Phosphan und sie hätten sich bereits 2015 gefragt, wie Phosphan mit Leben zusammenhängen könnte.

Kimberley Cartier fragt, wie lange Phosphan in der Atmosphäre der Venus, besonders bei der Höhe und in dieser Wolkenschicht sich hebt und ob es ständig oder sporadisch produziert wird. Dr. William Bains merkt an, dass dies eine wirklich tolle Frage sei und erklärt, dass in der obersten Wolkenschicht oder auf der Wolkenschicht Phosphan sich nur um die Dutzend Minuten hält, diese Details allerdings nur ungenau bekannt sind, weil noch einiges Wissen aber die Physik hinter der Venusatmosphäre unbekannt sei. Allerdings weiter tiefer in der Wolkenschicht halte sich das Phosphan „sehr lange“. Der zweite Teil der Frage ließe sich weniger gut antworten, weil es schwierig herauszufinden ist. Nach seinen Angaben würde es nicht in kurzen Schüben produziert, aber wahrscheinlicher in zum Beispiel einem Zyklus von einer Stunde, aber das sehr ungewiss sei. Prof. Jane Greaves fügt hinzu, dass die Rotation der Venusatmosphäre selbst etwa vier Tage daure und so eventuelle lokale Venusbakterienkolonien schnell verstreue.

Die nächste Frage von Matt Kaplan, welche der Host des Radios der „Planetary Society“ sei, ist, wie das Team um Prof. Jane Greaves sich eine neue Venusraumfahrtmission vorstelle. Prof. Sara Seager meinte, dass es im Moment einen aktiven japanischen Orbiter um Venus gäbe und Indien und die ESA Venusmissionen geplant haben und dass sie hoffen, dass private Raumfahrtorganisationen diese Ideen ebenso aufnehmen würden und dass dann vielleicht ein sogenannter Massenspektrometer nach schwereren Molekülen suchen würde. Matt Kaplan fragte dann noch, ob sie sich eine Ballonflug-Mission für die Venus vorstellen und wünschen würden. Prof. Sara Seager denkt, dass ein Ballon die beste Idee wäre und er in diesen Höhen mit einer Masse von vielleicht einem Menschenkind selbst einige Jahre in der Venusatmosphäre bleiben könnte und wertvolle Daten liefern würde, sowie bereits die sowjetischen Vega-Ballons von 1984, welche bereits eine breite internationale Kooperation hatte, die ähnliche Flüge in Vergangenheit gemacht haben.

Die Frage des nächsten Fragestellers Clive Cookson ging um die Rate der Phosphanproduktion, wenn es sich hier tatsächlich um Organismen handelt. Sie wurde beantwortet damit, dass entweder die Effizienz der Organismen dort ist nur bei 10 % oder dass es dort nicht viele Organismen gibt, aber dennoch einiges an Phosphan produzieren. Auch an dieser Stelle können sie nicht viel genaues sagen und Prof. Bains verweist wieder auf viele Unbekannte in der Venusatmosphäre hin.

Ethan Siegel fragt, ob sie sich sicher sein können, dass das Monophosphan doch nicht irgendwie abiotisch, also nicht im Sinne von Kleinstlebewesen, erklärt werden können und ob das Phosphan nicht irgendwie wie in den dichten Atmosphären des Jupiters und Saturns entstehen könne, die ja ohnehin schon Gasplaneten sind. Er leitet seine Frage mit einigem Einleiten und Wiederholen des Gesagten ein und bekommt öfters ein Nicken der Wissenschaftler. Prof. Sara Seeger bestätigt nochmal, dass die Venus wirklich nicht gut mit Jupiter und Saturn vergleichbar sei, da die Mengen an Gas und der Druck und die Temperatur in den Tiefen des Jupiters und Saturns und die großen Mengen an Wasserstoff die Produktion des Phosphans in den Gasplaneten verglichen mit der Venus zufriedenstellend erklärt werden könne. Sie will aber eine Ähnlichkeit in der Produktion mit den beiden Gasriesen nicht ausschließen und wiederholt, dass mehr Gewissheit eine Raumfahrtmission bringe, damit man vor Ort die Sachlage genau untersuchen kann. Dr. William Bains bestätigt das Gesagte der Prof. Sara Seager und betont wiederholt, dass Kleinstlebewesen nur einer der Möglichkeiten seien. Er findet die Frage von Ethan Siegel sehr berechtigt und wiederholt, dass für die Jupiter-Phosphan-Prozesse ein Druck von Hunderten an Atmosphären (=Hunderte Bar) und dann noch viel oder fast alles mit Wasserstoff für dasselbe Prinzip notwendig seien, erwähnt aber, dass die Venusatmosphäre nur eine vernachlässigbare Menge an Wasserstoff aufweise. Für jede nur erdenkliche Art von Mechanismus für die Menge an Phosphan hätten sie zu vielen anderen Experten gesprochen und sie hätten äußerst viele Möglichkeiten mit ihren thermodynamischen Berechnungen überprüft.

Nikolai Garonny, ein Wissenschaftsjournalist von BBC in Russland fragt, ob die Wissenschaftler mit Roskosmos und ihrer aktuellen Venusmission „Venera D“ Kontakt haben, da sehr viele Daten von der Venusatmosphäre von dem u.a. Ballonflug-Teil der Vega-Sowjetmission zur Venus 1985 gesammelt wurden. Dies verneint die Prof. Jane Greaves und meint, dass alles so schnell ging, mit den Berechnungen, dass man daran nicht wirklich nachgedacht hätte.

Der freiberufliche Rick Lovett schreibt für das australische Cosmos-Magazin und sagt, dass viele Fragen für ihn beantwortet wurden, aber wie die irdischen Lebensformen Phosphan produzieren. Seine Frage wurde von Prof. Sara Seager wieder mit einem „wir wissen es ehrlich gesagt noch nicht genau“ beantwortet. Also sie scheinen zwar überzeugt zu sein, dass sie auch Phosphan produzierten, aber nicht genau über welche biochemischen Reaktionen, aber dass sie hoffen, dass sie damit andere Wissenschaftler dazu motivieren, in diese Richtung zu forschen.

Jemand, der nur als „Christian“ erwähnt wird, fragt was für andere Arten das Forscherteam von Bestätigungen der Sache des Phosphans in der Venusatmosphäre gerne sehen würden. Das Team hofft so zum Beispiel auf noch weitere Biomarker um die Theorie um anaeroben Organismen zu erhärten.

Ein anderer Fragesteller, dessen Name offenbar nicht genannt wurde, wollte wissen, wie der Prozess von 2016 bis zu dem Zeitpunkt der Pressekonferenz am 14.09.2020 aussah und ob sie wüssten, dass Peter Beck, der CEO von Rocket Lab eine Raumfahrtmission zur Venus plant. Prof. Jane Greaves kam mit der Idee, weil sie eine Astrobiologin und eine Milimeterwellen-Astronomin ist. Im Januar 2016 kam sie mit der Idee, die ihr aufgesprungen ist und sie brauchte nach eigenen Angaben viel Zeit, um Teleskope für Observation zu bekommen. Sie hat dann im Juni 2017 Zeit vom JCMT-Observatorium bekommen und viel Hilfe von deren Leitung, welche sogar in einer Liste am Ende des Papers stehen. Sie hätten angeblich auch 18 Monate gebraucht, um sich selbst zu überzeugen, dass es da ein Signal gab. Damit seien sie dann zu ALMA gegangen, welches ihnen dann speziell Beobachtungszeit dafür gab, was allerdings riskant war, denn sie mussten es in wenigen Wochen schaffen und zwischendrin gab es auch noch schlechtes Wetter, welches die Beobachtungen verhinderte und dann war bereits März 2019. In der Zeit danach haben sie überwiegend ihre Berechnungen getan. Prof. Sara Seager sprach, dass sie zwei Jahre bereits zusammen mit Dr. William Bains und ein paar anderen bei den Berechnungen geholfen haben und ihre Expertise mitbrachten und dass es letztendlich zu deren Erfolg geführt hat.

Die Fragerunde und somit die Pressekonferenz neigt sich dem Ende zu und die nächste Fragestellerin namens Jennifer Millard, welche unter anderem zu einem astronomischen Podcast gehört, fragt aufgeregt darüber, woher die Venus als „natürliche Radioquelle“ ihre Radiostrahlung her hat und ob es von diesem theoretisch möglichem Leben eine Verbindung zum Leben auf der Erde gibt und wäre sich bewusst, dass diese Frage natürlich höchst spekulativ sei. Prof. Jane Greaves beantwortet die Frage damit, dass es eine Mischung aus vielen verschiedenen Emissionen aus der Venusatmosphäre sei, so macht z.B. das Kohlenstoffdioxid den Großteil des Spektrums aus, mit seinen typischen Linien. Prof. Sara Seager fügt noch hinzu, dass die Sonne in die Venusatmosphäre scheint und auch ein Teil der inneren Energie aus dem Kern der Venus auf die Venusatmosphäre fällt und dort in dieses Spektrum „uminterpretiert“ wird, welches in den Radiowellen auf die Teleskope der Erde fällt. Zur zweiten Frage vermuten Prof. Sara Seager und Dr. William Bains hinter dem Leben in den Wolken der Venus eine möglicherweise ganz neue Lebensform, welche im Grundsatz zu den Lebensformen der Erde unterschiedlich sind. Aber sie schließen auch die Möglichkeit nicht aus, dass die Lebensformen in einer Weise Kontakt mit der Erde hatten und meinen dasselbe für den Mars.

Prof. Sara Seager will an der Stelle noch hinzufügen, dass zum einen Biosagnaturen tatsächlich auch u.a. Methan, Lachgas, Ammoniak, Methylchlorid, allerdings seien diese Gase schwieriger in der Venusatmosphäre auszumachen, weil sie theoretisch zusammen verwickelt sein können oder dass Kohlenstoffdioxid ihre Spektren blockiert, oder zur rar in der Atmosphäre verstreut sind. Ein Gerät nahe der Venus könnte jedoch die Signale verstärken. Sie erzählt dann über Rocket Labs neuste Ideen, sie würden ein Gerät mit nur 15 Kilogramm und davon nur 3 Kilogramm für eine Art von Nutzlast zur Venus schicken, da ihre Raketen ja wirklich nur Kleinraketen sind.

Sie haben nur noch zwei Minuten Zeit und könnten eine weitere Frage beantworten. Als letzte kommt somit Pamela Gay von Daily Space des Planetary Science Institute fragt, ob es Unterschiede von der Nachtseite der Venus und der Tagseite der Venus im Bezug zur Entdeckung gibt. Prof. Jane Greaves denkt, dass es in der Tat einen natürlichen Unterschied gibt, besonders im Infrarotbereich, aber weniger im Radiobereich des Spektrums.

Nun kommt schon die Abmoderation und der Hinweis, wo mehr Informationen gefunden werden kann, z.B. gibt es Erklärvideos auf der Webseite der Royal Astronomical Society und auch die ESO hat einiges an Material. Eine Fragerunde auf Twitter wurde ein Tag später abgehalten und ein „Ask Me Anything“ (zu Deutsch: Frag mich alles) auf Reddit zwei Tage später.

Weblinks / Quellen:

GSA-Beitrag über die Venus: Die Venus
Aktuell laufende Venusmission: https://de.wikipedia.org/wiki/Akatsuki

News: Als die Magellanschen Wolken auf die Milchstraße stießen

Neue Simulationen zeigen, dass es wahrscheinlich einen großen Halo oder eine Corona um die Magellanschen Wolken geben dürfte. Das war bereits vorher vermutet, doch jetzt gibt es mit dieser Simulation ein Modell, welches die Entstehung und beginnende Einverleibung der Magellanschen Wolken schlüssiger erklärt als zuvor. Die Magellanschen Wolken sind die größten Satellitengalaxien der Milchstraße und sind beide (Große Magellansche Wolke (GMW), Kleine Magellansche Wolke (KMW)) nur von der Südhalbkugel der Erde zu sehen.

Der bereits bekannte Magellan-Strom ist ein Strom aus heißem Gas und Staub, welches die Magellanschen Wolken mit der Milchstraße verbindet. Dieser Strom kann nicht gesehen werden, da die größtenteils ionisierten Filamente nur als u.a. eine Radioquelle sichtbar ist. Jedoch ist jetzt neu, dass die Magellanschen Wolken offenbar zum ersten Mal die Milchstraße kreuzen und dass dabei Gas abgezogen wird.

Jetzt hatte man lange Zeit vermutet, dass Gezeitenkräfte und Staudruck (engl.: ram pressure) den Gasstrom verursachen, in dem sie grob das Gas einfach von den Zwerggalaxien einsaugen. Laut Simulationen dürfte sich nur ein Zehntel der Masse des Magellanschen Stroms bei einer Begegnung der Milchstraße mit den Magellanschen Wolken damit erklären.
Die Astrophysiker um Scott Lucchini der University of Wisconsin bringen nun den Ansatz, dass sich u.a. auch wegen anderer kleinerer Zwerggalaxien nahe der Magellanschen Wolken, präzisere Massebestimmungen der GMW, Detektion von hochionisiertem Gas und andere kosmologische Simulationen ein Halo um die GMW mit einer durchschnittlichen Temperatur der sehr dünn verteilten Teilchen von rund 500 000 Kelvin.

In deren hydrodynamischen Simulationen können sie den Magellanschen Strom und ihren führenden „Arm“ zur Milchstraße recht gut reproduzieren. Sie erklären die Form durch räumliche Ausdehnung Radialgeschwindigkeitsgradienten und die Masse des ionisierten Gases aus dem Strom. Auf so ein Halo um die GMW gab es schon früher Hinweise. Der Halo dürfte eine Masse von 3 Milliarden Sonnenmassen einst gehabt haben und bereits über den Strom etwa ein Viertel dieser Masse langsam an die Milchstraße abgegeben haben. So sind durch den Halo auch keine Sterne in den Magellanschen Strom geraten.

Quellen:

C/2020 F3 (NEOWISE)

NEOWISE ist ein langperiodischer Komet, welcher mit etwas Glück Mitte Juli bis Anfang August mit bloßem Auge abends Richtung NNW zu sehen ist. Er wurde am 27.03.2020 vom Weltraum-Infrarotteleskop WISE entdeckt, welcher auch teilweise namensgebend ist.

Langperiodischer? Komet?

Was ist ein Komet und was bedeutet langperiodisch? Ein nach dem anderem.

Ich schrieb im Artikel „Asteroiden, Planetoiden, Meteore und Meteoriten“ auch einen Absatz über die Kometen:

Kometen kennen die Menschen schon über die Antike hinaus. Oft hat man von dem einen großen Kometen gehört, der alle Menschenleben ungefähr wiederkehrt. Der Halleysche Komet – benannt nach Edmund Halley, der, der seine Flugbahn berechnete – wurde vermutlich überdurchschnittlich oft gesehen. Doch Kometen kommen vielleicht auch nur einmal: Der Komet ISON von 2016 zum Beispiel verging 1,6 Millionen Kilometer nah an der Sonne und löste sich auf.

Dann gibt es langperiodische Kometen wie der McNaught, PanSTARRS-Komet, oder Hale-Bopp und Halleyscher Komet sind langperiodisch. Sie tauchen oft nach Jahrhunderten oder Jahrtausenden wieder auf und kommen aus der Oortschen Wolke, welche Jan Oort zuerst postulierte. Eine unregelmäßige „Kugel“ aus Kometen, die bis zu 1 Lichtjahr von der Sonne entfernt ist.

Es gibt im Gegenzug auch kurzperiodische Kometen, welche u.a. aber durch die Gravitation von Jupiter oder Saturn die Bahn gewechselt haben. Ein Beispiel für einen kurzperiodischen Kometen ist 46P Wirtanen, der Anfang dieses Jahres an uns vorbeizog.
Ein Komet ist also ein eher kleineres Objekt und bestückt mit einem markanten Schweif und bestehen aus viel Eis und Gestein, aber sein Kern ist viel dunkler als sein Schweif.

Ein Komet besteht aus einem Kern, ein Koma und einem, oder auch zwei Schweife. Der Kern ähnelt als bloßer Kern einem Asteroiden, jedoch haben Kometen eine geringe Masse und bestehen aus viel gefrorenem Wasser (Eis) und Kohlenstoffdioxid. Auch andere Kohlen-Wasser-Stick- und Sauerstoffverbindungen können in Kometen gefunden werden, so auch viel Kohlenstoff, oder Cyanidgas, wie bei dem Kometen Borisov.

Die Koma ist wie eine Art Atmosphäre um den Kometen, die der Komet innerhalb von 5 AE, das sind etwa 750 Millionen Kilometer, ausbildet. Dabei handelt es sich um die Sublimation von Eis in die nahe Umgebung des Kerns. Dabei werden auch vereinzelt Staubteilchen des Kerns frei. Laut Informationen der Giotto-Kometensonde zum Halleyschen Komet ist die direkte Sublimation von Eis auf der Oberfläche des Kerns nicht ausschlaggebend, sondern viel mehr die Austritte von flüchtigen Gasen (wie Wasserdampf) aus brüchigen Stellen der sehr dunklen, vermutlich rußigen Oberfläche von Kometen.

Interessant wird es beim Schweif. Es gibt eigentlich zwei verschiedene Schweife, einem Staubschweif und einen Plasmaschweif. Diese Schweife bilden sich etwa erst unter der Marsbahn aus, vorher sind sie kaum vorhanden. Der sehr langgestreckte Plasmaschweif kann bis zu 10 Millionen Kilometer lang erden und geht vom Kometen direkt zum antisolaren Punkt (von der Sonne weg) ab. Er ist aus Molekülionen, welche durch eine starke Beeinflussung der diffundierten Gase mit dem Sonnenwind ionisiert und stark erhitzt wird. Sie werden vom Sonnenwind, sowie von dem Strahlungsdruck der Sonne weggeblasen.
Der andere Schweif ist der Staubschweif und ist mehr diffus und meist weniger gut sichtbar. Er beinhaltet den großen Teil des Materieverlusts durch die u.a. Sublimation und generelle Aufwühlung des oberflächennahen Materials des Kometenkerns.

Sichtbarkeit

Es ist sehr schwierig, eigentlich unmöglich vorauszuberechnen, wie hell NEOWISE Ende Juli tatsächlich wird. Wenn wir Glück haben, wird er schätzungsweise eine maximale Helligkeit von 2 mag erfahren. Das ist so hell, wie der Polaris/Polarstern es ist. Die nächste Annäherung hat er am 22/23.07.2020 mit ungefähr 103,5 Millionen Kilometer.

Um den 06.07.2020: Im Sternbild Fuhrmann, geht eine Stunde nach Sonnenuntergang unter. Beste Beobachtungszeit etwa gegen 5 Uhr morgens, Richtung NO, an diesem Zeitpunkt ca. 11 Grad über dem Horizont. Täglich aktualisierte Sichtbarkeitsdaten ab sofort immer in der Newsleiste links, bzw. Unten auf der Webseite.

Die Position von C/2020 F3 NEOWISE am Nachthimmel. Jeder Punkt macht eine Woche. Bildquelle: https://upload.wikimedia.org/wikipedia/commons/4/4a/Comet_2020_F3-skyview.png

Daten, Fakten, Zahlen

Seine Orbitalparameter:

Sein Radius wird auf etwa 10 km geschätzt.

Videogalerie

Quellen:

GSA Spezial: Aktuelle Einschränkungen in der Raumfahrt und Astronomie

Ja, ich habe mal Lust gehabt, so einen lustigen Titel zu nehmen. Vielleicht lesen dann ein paar mehr diesen Artikel. Heute soll es darum gehen, wie das Coronavirus die Raumfahrt und Astronomie stark einschränkt. Es ist tatsächlich so, dass es weltweit starke Einschränkungen zur aktuellen Forschungsarbeit gibt, da sämtliche Abläufe trotzdem immer noch menschliches zutun benötigen, selbst wenn mittlerweile viel von zu Hause aus möglich ist. Also wollen wir heute mal auflisten was alles eingeschränkt wird/ist.

Der ExoMars-Rover Rosalind Franklin. (Nicht echt auf dem Mars) Bildquelle: https://www.fr.de/bilder/2019/08/14/12914242/2128840616-exomars-rover-mars-rosalind-franklin-1rB084rvLca7.jpg

Der ExoMars Rover Rosalind Franklin dessen Start zum Mars während dem Startfenster von Sommer 2020 in gemeinsamer Sache von ESA und Roskosmos wird zum nächsten Zeitfenster, alle 26 Monate gibt es ein günstiges Zeitfenster, im Jahr 2022 verlegt. Schuld daran sind eher weniger die einschränkenden Maßnahmen zur Eindämmung des Coronavirus, sondern kleinere Schwierigkeiten: Wegen diversen Problemen mit den Verpackungssäcken der Fallschirme für den ExoMars Rover sind einige umfangreichere Tests notwendig. In den USA sollten zwar die finalen Fallversuche durchgeführt werden, mussten aber von der Seite der USA geringer priorisiert werden, so wurden diese Tests verschoben werden. Auch von der elektronischen Seite gibt es noch kleinere Probleme, welche Softwarestests notwendig machen. Und nun kommt das Coronavirus ins Spiel: Wenn diese verschiedenen Arbeiten und Arbeitsteams aus den verschiedenen Ländern der ESA bzw. Russland kommen, was jetzt nicht mehr möglich ist, verzögert sich die Arbeit rund um den Rover sehr.

Eine Langer Marsch 3B-Trägerrakete. Bildquelle: https://www.raumfahrer.net/raumfahrt/raketen/images/cz_3b.jpg

Vom aktuellen Marsrover der NASA, Perseverance, habe ich keine gemeldeten Verzögerungen gesehen und es sieht auch im Moment so aus, als ob der Starttermin im Sommer 2020 stehen würde.

In China sieht es dabei ganz anders aus. Trotz der massiven Reiseeinschränkungen auch innerhalb des Landes, geht der Raumfahrtbetrieb dort unbeeindruckt weiter: Am 16. März startete eine Langer Marsch 7A Rakete, am 09. März eine Langer Marsch 3B/E und für die Zukunft ist für den 24. März eine Langer Marsch 2C-Rakete angesetzt. Und zwei weitere sollen noch diesen Monat von der chinesischen Seite aus starten.

Das europäische Kontrollzentrum in Darmstadt läuft seit dem 16. März mit einer Mindestbesatzung. Trotzdem werden die Aufgaben nicht weniger: Sie müssen ihre millionenschweren Satelliten in einer Woche mehrmals in eine andere Bahn bringen, weil sie sonst möglicherweise mit Trümmerstücken kollidieren können.

Die NASA läuft ebenfalls auf stand-by. Einige wenige Mitarbeiter in vereinzelten Instituten sind an dem Coronavirus erkrankt und so mussten die Institute die allermeisten Mitarbeiter nach Hause schicken. Unklar ist es, wie es dieses Jahr scheinbar weitergeht. Aktuelle Tests um das Orion-Raumschiff laufen gerade und „das Orion-Raumschiff könne man schlecht mit nach Hause nehmen“, heißt es.

In Kourou, in Französisch-Guayana, dort wo die Raketen für die ESA abheben, stehen ebenso mehrere Raketenstarts in den kommenden Wochen an, die verschoben werden müssten. Der Start der Vega-Rakete mit 44 Kleinsatelliten an Bord, die heute am 23. März starten sollte, die zwei nächsten Starts der europäischen Soyuz-2-Raketen. Anfang Juni soll die Ariane 5 zum nächsten Mal starten und die Ariane 6, der Nachfolger von der Ariane 5, soll noch dieses Jahr starten. Diese Starts wurden bisher noch nicht verschoben oder abgesagt.

OneWeb mit seinen Internetsatelliten, die vergeblich mit SpaceX konkurrieren, startete am 21. März 34 neue Internetsatelliten mit einer Soyuz 2.1b/Fregat von Baikonur trotzdem. Außerdem steht dieses in London ansässiges Unternehmen kurz vor der Insolvenz.

Die ESO, Europäische Südsternwarte, betreibt an drei Standorten in der Atacama-Wüste in Chile Observatorien und will den Betrieb ebenso herunterregulieren. Die Grenzen wurden am 18. März geschlossen und alle Arbeitsreisen der Techniker und Forscher zu den Observatorien wurden abgesagt, welche nicht notwendig sind. Alle Veranstaltungen bei den Observatorien sind schon länger abgesagt. Die meisten Teleskope vor Ort laufen derzeit im eingeschränktem Betriebszustand.

Genauso wie mit dem Event Horizon Telescope (EHT): Die Beobachtungskampagne vom 26. März bis zum 06. April wurde abgesagt. Sie wollten ursprünglich in dem Zeitraum weiter mit ihrem weltumspannenden Netz aus Radioteleskopen die Supermassiven Schwarzen Löcher von M87 und der Milchstraße beobachten.

Auch AURA reduziert ihre Forschungsbemühungen. Sämtliche amerikanische Teleskope sowie das Gemini South Telescope fährt ihren Betrieb drastisch herunter. Der für dieses Jahr angesetzte Release 3 der neuen Daten vom Himmelskartografierungssatellit Gaia, der Daten von rund eine Milliarde neuer Sterne und sehr viele Sterne davon mit Angaben von Spektren, Entfernungen, etc. enthält, muss leider verschoben werden. Diese Kataloge stellen wichtige Arbeitsgrundlagen dar. Die bisherigen Kataloge stehen natürlich nach wie vor zur Verfügung.

Quellen:
https://www.esa.int/Newsroom/Press_Releases/ExoMars_to_take_off_for_the_Red_Planet_in_2022
https://www.nextspaceflight.com/launches/; https://www.nextspaceflight.com/launches/past/
https://www.riffreporter.de/weltraumreporter/corona-in-raumfahrt-und-astronomie/
https://futurezone.at/science/so-wirkt-sich-die-corona-krise-auf-die-raumfahrt-aus/400788134

Beteigeuze

Ursprünglich habe ich gedacht, ich kann das als kleine Randinfo in die Kategorie News an den Rand schreiben. Jetzt aber verkaufen sämtliche Medien und Presseanstalten diese eigentliche fast schon irrelevante Nachricht als wunderbar-herrliche Sensation mit viel Tärä! Kurz: Es wurde eine große Helligkeitsabnahme von dem Faktor 2,6 oder 1,15 mag seit etwa Anfang/Mitte Oktober bei Beteigeuze festgestellt. 

Beteigeuze: vom VLT gesehen.

Was ist Beteigeuze?

Beteigeuze ist ein Roter Überriese von etwa 20 bis 22 Sonnenmassen. Seine Spektralklasse ist M2 Ia. Er ist zusammen mit Rigel die dominierenden Sterne im Orion, bzw. in den Wintersternbildern. Beteigeuze existiert ungefähr seit 10 Millionen Jahren und gehört wegen seiner relativen Bewegung zu der Sterngruppe von Orion OB-1 an, eine Sterngruppe, welche hauptsächlich ähnlich junge Sterne beherbergt. Schon mit dem bloßen Auge kann man den Beteigeuze deutlich dunkel sehen.

Was ist ein Roter Überriese?

Ein Roter Überriese ist ein Stern, der die Hauptreihe verlassen hat, da er nun auch schwerere Elemente fusioniert. Er verbrennt nun in verschiedenen Schalen zum Kern hin immer schwerere Elemente. Das nennt man Schalenbrennen. So setzt aber immer die nächsthöhere Kernfusion ab einer gewissen Temperatur und Masse ab. Die Kernfusion von Helium in Kohlenstoff dauert dabei nicht so lange, wie die Fusion von Wasserstoff in Helium. Je fortgeschrittener der Prozess ist, desto schneller geht der Prozess.

Das HRD. (Hertzsprung-Russell-Diagramm)

Dabei kann er nur soweit Schalen haben, wie er auch die Elemente fusioniert. D.h. wenn ein Stern gerade Neon fusioniert, hat er eine Wasserstoff-Schale, eine Helium-Schale und eine Kohlenstoff-Schale.

Manche Rote Überriesen, besonders die größeren, die „Hellen Riesen“ oder die „Überriesen“ neigen dazu, zu pulsieren.

Rote Riesen oder Rote Überriesen entstehen aus den großen Hauptreihensternen, die im Asymptotischen Riesenast heraufsteigen. Auch schwere, heiße und blaue O-Sterne wandern über die Überriesen, später eventuell über die Wolf-Rayet-Sterne zur Supernova. So werden Rote Zwerge, wenn sie kleiner als etwa 0,5 Mʘ sind, zu Weißen Zwergen und glühen dann infolge thermischer Reaktionen einige 1010 Jahre nach, wenn sie größer als etwa eine Halbe Sonnenmasse, werden sie zu Roten Riesen, und so weiter (s. Diagramm). Nach folgender Faustformel war Beteigeuze etwa 6 Millionen Jahre lang in der Hauptreihe als ≈O5-Stern, bevor er dann als Blauer Superriese immer rötlicher wurde. TesT ≈ 1010 a × (M/Mʘ) × (Lʘ/L). Dabei steht TesT für die grobe Anzahl der Jahre für den Verbleib in der Hauptreihe, a für Jahre, M und L für die Masse und Leuchtkraft des Sterns, und Mʘ und Lʘ steht für die Sonnenleuchtkraft. So würde es mit einem Stern (Sx) von M = 1,3 Mʘ; L = 1,65 Lʘ aussehen: TesT ≈ 1010 a × (1,3/1) × (1/1,65) ≈ 7,879 Mrd. a. 

Das Diagramm zeigt die Entwicklung der Hauptreihensterne.

Wo befindet sich Beteigeuze?

Wie schon in der Tabelle erwähnt, befindet er sich im Sternbild Orion. Er bildet die „Schulter“ des Orion und liegt „gegenüber“ von Rigel. Der Orion ist im Herbst/Winter zu sehen, am Besten im Dezember, und ist in seiner Gestalt und Auftreten sehr markant und kaum zu übersehen. Der Orion und somit auch Beteigeuze stehen dem Himmelsäquator nahe. (Der Himmelsäquator schneidet den Orion).

Er markiert am Wintersternenhimmel in den nördlichen Breiten etwa das Zentrum des Wintersechsecks. Das Wintersechseck besteht aus Capella, Aldebaran, Rigel, Sirius, Prokyon, Castor oder Pollux. Im Folgenden kommt eine Sternkarte:

Beteigeuze als östliche Schulter des Orion.

Was sind die möglichen Gründe und Erklärungsversuche für die Helligkeitsabnahme? 

Wie schon gesagt, sinkt die Helligkeit von Beteigeuze seit etwa Mitte Dezember, wie hier verdeutlicht: 

Die gemessenen Helligkeiten lagen aktuell Jahresanfang rund um +1,6 mag. Edward Guinan meldete Ende Dezember auf Astronomer’s Telegram eine Helligkeit von +1,294 mag.

Woran liegt das? Edward Guinan schrieb in seinem Text, dass wahrscheinlich seine zwei verschiedenen Zyklen sich momentan überlappen. Ferner besteht die Möglichkeit, dass austretendes Gas oder Staub aktuell Beteigeuze leicht verdeckt. Die Temperatur der Photosphäre des Sterns ist bereits um 150 K gefallen (Teff = 3’545 K) und seit 1993 ist der Radius um 15 % kleiner geworden.

Beteigeuzes Helligkeitsabnahme

Die Zwei verschiedenen Zyklen? Was ist das genau? Nun, die Photosphäre von Beteigeuze und übrigens auch andere ähnliche Rote Überriesen, wie Mira (Omikron Ceti), pulsieren. Beteigeuze zum Beispiel ist so ein SRc-Typ, also helbregelmäßig und variabel. Die Photosphären von Mira-Sternen schwingen stets mit der Grundfrequenz, schwingen andere halbregelmäßig, wie auch Beteigeuze, wie eben schon gesagt, in einer oder mehreren Harmonischen. Bei Beteigeuze gibt es zwei solcher Zyklen und die sollen sich jetzt nach der Ansicht von Edward Guinan überlappen.

Was macht die Presse daraus?

Die Presse und die ganzen Zeitungen und andere Medien wollen natürlich möglichst interessante Nachrichten präsentieren und teilweise geht das zu weit und wird schnell so dargestellt, dass die Nachricht sensationell wirkt. Schade eigentlich.

Die meisten deutschsprachigen Medien, sogar allgemeinbekannte Medien haben nun sowas geschrieben wie: „Beteigeuze – Im Sternbild Orion erscheint demnächst eine Supernova“, und im Textkörper als erster Satzteil dann sowas wie: „Astronomen wissen, Beteigeuze…; Wissenschaftler sagen, dass Beteigeuze in naher Zukunft explodiert; Wissenschaftler, Wissenschaftler, Forscher, und die Astronomen…“. Mein Mund wird beim Lesen solcher Schlagzeilen in ein langegezogenen, geraden Mund und meine Augen schließen sich, die Hände ballen sich zu Fäusten.

Tatsächlich gibt es einige Medien, die behaupten, dass es schon in einigen Wochen, Monaten oder wenige Jahre soweit sei, oder dass er in Wahrheit 2012 explodierte und die mega-ultra-gigantomanischen Schockwellen, die natürlich nur Aliens gemacht haben können, und dann dass wir es in 643, oder jetzt nur noch 636 ½ Jahre mitbekommen. In 2655. Pah! Wer’s glaubt!

Wenn mich jemand fragen würde, warum solche Berichte nicht stimmen, im Bezug auf das Datum der Supernova, dann würde ich ihm antworten, dass ein Helligkeitsabfall alleine als Erklärung nicht ausreichen würde, aber tatsächlich nicht genau wisse, warum er das jetzt tut. Und dass derjenige ganz sicher nicht mehr in seinem Leben eine Supernova von Beteigeuze ausgehend beobachten könne. Die überlappenden Zyklen sind aber doch eine gute Theorie. Bei einer Supernova wird der Stern zuvor nochmal in der Helligkeit für gewöhnlich ansteigen, wie wir inzwischen recht gut wissen.

Wie lange dauert es tatsächlich zu einer Supernova?

Einer Schätzung und Modellberechnung von slate.com zufolge wird es grob noch 100’000 Jahre dauern, bis Beteigeuze detoniert. Miteinbezogene Parameter waren Radius, Leuchtkraft, Masse, Massenverlustrate vom Sternenwind, Rotationsdauer, Alter und sowas. Eine genauere Beschreibung gab es nicht, aber wenn dieser Stern einiges an Helium bereits verbrannt hat und die Kohlenstoff-Fusion irgendwann demnächst einsetzt, kann die Supernova, es wird eine Supernova vom Typ II werden, in den nächsten Hunderttausend Jahren durchaus passieren. Maximal wird er nur noch 600’000 Jahre haben, so gebe ich eine vorsichtige Schätzung ab.

Erschwerend kommt hinzu, dass es scheinbar sehr schwierig ist Daten wie die Masse, oder den Radius, die Entfernung oder Leuchtkraft zu bestimmen, wenn man wie oben dargestellt teilweise sehr stark abweichende Werte bei verschiedenen Messmethoden bekommt.

Warum kann man nicht gewiss vorhersagen, wann die Supernova stattfinden wird?

Genau, warum kann man nicht sagen, ja, am 23. Mai im Jahr 173208 wird er hochgehen, oder zumindest im Jahr 173208? Aber eine Sache ist sicher, wenn es soweit ist, und er fusioniert Eisen, wird er garantiert nicht mehr als 0,1 Sonnenmassen verloren haben, so kann er zur Supernova werden. Das Endprodukt wird vermutlich ein Neutronenstern, obwohl er theoretisch schon ein schwarzes Loch werden könnte, bloß wird er in der Supernova vergleichsweise viel Material davonschleudern.

 Nun, Supernovae passieren in unserer Ecke nur seeehr selten! Im letzten Jahrtausend gab es selbst vermutlich nur 4 Supernovae in unserer Galaxie und die Letzte war von 1604. Eine Supernova in unserer Satellitengalaxie GMC, oder GMW, fand 1987 statt. (Die Neutrinodetektoren maßen 11 Neutrinos fast zeitgleich und zwar bereits ein paar Stunden zuvor.) Wenn man also von einem solchen Ereignis zuvor unverhältnismäßig viele Neutrinos detektiert, könnte man sagen, dass sich demnächst eine Supernova stattfinden mag, aber ob man aus den Messungen ein Vektor berechnen lässt, welcher Stern zur Supernova werden wird, ist fraglich. Nachtrag: Man hatte 6 Supernovae letztes Jahrtausend in unserer registriert und man schätzt, dass man die meisten durch interstellare Extinktion in der galaktischen Scheibe nicht mitbekommt. So schätzen die Wissenschaftler 12 bis 26 Supernovae jedes Jahrtausend in unserer Galaxie.

Möglicherweise kann man im Spektrum eines schweren Sterns ablesen, dass er jetzt Silizium oder Sauerstoff fusioniert, und dass es deswegen sehr gut sein kann, dass er in wenigen Jahren detoniert. Aber das geht leider kaum, denn es lässt sich nicht feststellen, wie weit ein solcher Stern im Schalenbrennen ist, denn eine Spektralanalyse scheidet aus, denn so ein Stern ändert mit dem was er fusioniert nicht seinen Charakter, welche Elemente er bereits fusioniert. Man nimmt eben an, dass er eine Wasserstoffschale besitzt und im Kern Helium. Möglicherweise ist er aber auch schon bei der Kohlenstoff-Fusion. Jetzt könnt ihr aber selbst euch die Chance ausrechnen, wie wahrscheinlich es ist, ein Stern zu observieren und feststellen, dass er hochgehen wird, wenn in unserer Milchstraße vielleicht 3 bis 8 Supernovae pro Jahrtausend stattfinden wird. Möglicherweise war das letzte Jahrtausend aber ein Zufall, denn die Menschen haben bereits vor 6 Tausend Jahren begonnen den Himmel zu observieren und als dann etwa zur selben Zeit die ersten schriftlichen Aufzeichnungen entstanden sind, denke ich mir, dass es sicher erwähnenswert gewesen wäre, ein solches Ereignis stattgefunden hätte.

Kann eine Supernova von Beteigeuze ausgehend uns gefährden?

Nein. Die Gammastrahlung und Röntgenstrahlung von Beteigeuze kommt nicht zu uns. Das ist so, weil die Rotationsachse, sprich, der Süd- oder Nordpol von Beteigeuze nicht zu uns zeigt. Außerdem sind wir viel zu weit weg von einer möglichen Supernova von Beteigeuze. Stellen wir dennoch eine Rechnung auf, was für eine Energie zu uns kommen kann. Nehmen wir die Leuchtkraft von Beteigeuze. Die Leuchtkraft sagt uns, was für eine Leistung ein Stern abstrahlt. Der Mensch strahlt ganz ungefähr 80 W ab. Wir arbeiten mit dem niedrigen und dem hohen Wert. Der angegebene Wert im Buch (Kompendium der Astronomie, von Hans-Ulrich Keller, geboren 1943, ISBN 9783440162767, S. 270) wird die Variabel L1 sein und die von der Webseite slate.com L2.
Die Leuchtkraft wurde in Lʘ angegeben. Das ʘ steht für die Sonne.

Wir wissen, dass die Sonne auf ein m2 1367 W in einer Entfernung von 149 597 870 700 m = 1 AE nominal abstrahlt. Um also die ganze abgestrahlte Leistung zu kennen, müssen wir uns eine Kugel mit dem Radius von einem AE vorstellen und jeden Quadratmeter kennen. Die Sonne ist ein isotroper Strahler, d.h. die strahlt in den Raum absolut gleich ihre Leistung ab. Um die Sonnenleuchtkraft also zu kennen, haben wir die Formel Lʘ=4π × r^2 × (P/A). Dabei steht r für den Radius des gedachten Kreises, also r = 1 AE, P steht für die Leistung und A für die Fläche, da wir hier als Erstes benutzt haben. So setzen wir ein: Lʘ=4π × 149 597 870 700 m^2 × 1367 W/m ^ 2. So kommt heraus Lʘ=2,812 293 791 598×1023 m^2 × 1367 W/m ^ 2, also ist eine Sonnenleuchtkraft das Äquivalent zu Lʘ=3,844 405 613 115 × 10^26 W.  Die Abhängigkeit vom Radius und der Temperatur zur Leuchtkraft ist etwa die folgende (Es ist eine grobe Faustformel; die Werte liegen meist nur in der Nähe): L=R^2 × Teff^4 . Das Ergebnis scheint tatsächlich in Watt zu sein. (Vergebt mir, wenn ich euch sagen muss, dass ich nicht „der Mathe-Boss“ bin.) Das wäre bei der Sonne z.B. L=696 342 km^2 × 5 780 K^4 = 5,411 984 383 108 × 10^26 W = 1,407 755 821 770 Lʘ.

Aber die Leuchtkraft von Beteigeuze bei einer möglichen Supernova-Explosion ist eine andere. Es wird eine Steigerung bei der Supernova um das 16’000-fache der Leuchtkraft ausgegangen. Das wäre also dann L1 = 224 Mio. Lʘ; L2 = 2 Mrd. Lʘ. Also eine Abgestrahlte Leistung von L1 = 8,611 468 573 377 × 1034 W; L2 = 7,688 811 226 229 × 1035 W. Um jetzt herauszufinden, wieviel Leistung davon bei uns ankommt, müssen wir wieder die Kreisoberfläche als Entfernung wegen dem isotropen Strahler als Stern dividieren. P_rErde = P_SN/O = P_SN × 4π × r^2. PSN ist wieder die Leistung der Supernova, r wieder die Entfernung zur Erde. Auch wenn die Entfernungsangaben auch wieder sehr stark variieren, nehmen wir eine Parallaxe von 5,07 mas, eine Entfernung von r = 642,5 LJ. In Metern sind das m = r × 299 792 458 × 31 557 600 = 642,5 × 299 792 458 × 31 557 600 = 6,078 519 328 633 × 10^18 m. Jetzt setzen wir in die Formel ein: P_rErde = P_SN × 4π × r^2 = 8,611 468 573 377 × 10^34 W / (4π × 6,078 519 328 633 × 10^18 m^2) = 0,018 546 918 047 W/m^2. Für L2 sieht es wie folgt aus: P_rErde = P_SN × 4π × r^2 = 7,688 811 226 229 × 10^35 W / (4π × 6,078 519 328 633 × 10^18 m^2) = 0,165 597 482 563 W/m^2. Das bedeutet, dass eigentlich fast keine Leistung mehr von der Supernova bei uns ankommt. Und Gammastrahlen vom Ausbruch kommen ganz sicher auch nicht zu uns, da der Stern wie schon gesagt immer noch nicht richtig zu uns ausgerichtet ist.

Ihh! Ich muss mal mach einer Funktion suchen, Formeln einfügen zu können. Das sieht in Word einfach besser aus!

Quellen

Bildquellen:
https://upload.wikimedia.org/wikipedia/commons/7/72/Sternbild_Orion.jpg
https://upload.wikimedia.org/wikipedia/commons/5/50/Betelgeuse_AAVSO_2019.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fc/Stellar_evolutionary_tracks-en.svg
https://upload.wikimedia.org/wikipedia/commons/6/6b/HRDiagram.png
https://www.eso.org/public/images/eso0927b/

Inhaltliche Quellen:
https://de.wikipedia.org/wiki/Beteigeuze
http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=alf+ori&submit=SIMBAD+search
http://www.astronomerstelegram.org/?read=13341
http://www.astronomerstelegram.org/?read=13365
https://en.wikipedia.org/wiki/Betelgeuse
https://slate.com/technology/2014/09/betelgeuse-astronomers-give-it-100000-years-before-it-explodes.html
https://www.schuelerlabor-astronomie.de/wp-content/uploads/2019/06/Fanni-Fiedrich-Spektroskopie-des-Roten-Riesensterns-Beteigeuze.pdf
https://astro.uni-bonn.de/~deboer/praktikant/sternent.html
https://de.wikipedia.org/wiki/Supernova
https://www.youtube.com/watch?v=dUf2ZHtF2IA
ISBN 9783440162767, S. 270
ISBN 9783440162767, S. 280; und generell das Kapitel 5